Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T15:07:45.513Z Has data issue: false hasContentIssue false

A model for the effect of line width and mechanical strength on electromigration failure of interconnects with “near-bamboo” grain structures

Published online by Cambridge University Press:  31 January 2011

E. Arzt
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
W.D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
Get access

Abstract

A simple analytical model for the effect of mechanical strength and line width (for the case of narrow lines) on the electromigration failure of metallic interconnects is presented. Because the line width/grain size ratio and the diffusivity enter differently in the model, application of the resulting failure time equation to published data can provide insight into the mechanisms of enhancement of electromigration resistance by grain structure optimization and alloying.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Black, J. R., IEEE Trans. Electr. Dev. 16, 338347 (1969).CrossRefGoogle Scholar
2Ames, I., d'Heurle, F. M., and Horstman, R. E., IBM J. Res. Dev. 14, 461463 (1970).CrossRefGoogle Scholar
3d'Heurle, F. M., Gangulee, A., Aliotta, C. F., and Ranieri, V. A., J. Electron. Mater. 4, 497515 (1975).CrossRefGoogle Scholar
4d'Heurle, F. M., Gangulee, A., Aliotta, C. F., and Ranieri, V. A., J. Appl. Phys. 46, 48454846 (1975).CrossRefGoogle Scholar
5Bhatt, H. J., Appl. Phys. Lett. 19, 3033 (1971).CrossRefGoogle Scholar
6d'Heurle, F. M. and Ames, I., Appl. Phys. Lett. 16, 8081 (1970).CrossRefGoogle Scholar
7Gangulee, A. and d'Heurle, F. M., Thin Solid Films 16, 227236 (1973).CrossRefGoogle Scholar
8Vaidya, S. and Sinha, A. K., Thin Solid Films 75, 253 (1981).CrossRefGoogle Scholar
9Vaidya, S., Sheng, T. T., and Sinha, A. K., Appl. Phys. Lett. 36:6, 464466 (1980).CrossRefGoogle Scholar
10Kinsbron, E., Appl. Phys. Lett. 36:12, 968970 (1980).CrossRefGoogle Scholar
11Arzt, E., in New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (DGM, Oberursel, Germany, 1989), pp. 185200.Google Scholar
12Blech, I. A., J. Appl. Phys. 47, 12031208 (1976).CrossRefGoogle Scholar
13Kinsbron, E., Blech, I. A., and Komem, Y., Thin Solid Films 446, 139 (1977).CrossRefGoogle Scholar
14Blech, I. A. and Herring, C., Appl. Phys. Lett. 29, 131133 (1976).CrossRefGoogle Scholar
15Shatzkes, M. and Lloyd, J. R., J. Appl. Phys. 59 (11), 38903892 (1986).CrossRefGoogle Scholar
16Sanchez, J., McKnelly, L. T., and Morris, J. W., Appl. Phys. Lett. (in press, 1990).Google Scholar
17Cho, J. and Thompson, C. V., Appl. Phys. Lett. 54 (25), 25772579 (1989).CrossRefGoogle Scholar
18Palmer, I. G., Thomas, M. P., and Marshall, G. J., in Dispersion Strengthened Aluminum Alloys, edited by Kim, Y-W. and Griffith, W. M. (TMS, 1988), pp. 217241.Google Scholar