Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T17:09:16.387Z Has data issue: false hasContentIssue false

Milling and mechanical alloying of inorganic nonmetallics

Published online by Cambridge University Press:  31 January 2011

T. Kosmac*
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903
T.H. Courtney
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903
*
a)Permanent address: Institute Jozef Stefan, Ljubljana, Slovenia.
Get access

Abstract

The versatility of mechanochemical processing was investigated in a number of nonmetallic inorganic systems. It is shown that high energy grinding can be used to produce amorphous carbon from synthetic graphite and some forms of natural graphite. Elemental sulfur can likewise be amorphized by prolonged high energy grinding. Phase transformations of αFe2O3 (hematite) and mechanochemical reactions of this phase with ZnO and NiO are strongly influenced by the presence of iron resulting from wear of the grinding media. Thus spinel type ferrites were obtained by grinding of such mixtures for short times (1–3 h in a Spex mill); however, longer grinding times resulted in the formation of FeO or (Fe,Zn)O (when grinding ZnO) or FeO or (Fe, Ni)O (when grinding NiO), presumably as a result of the reaction of mill wear debris with the mill charge. The suspected (Fe, Zn)O phase is most likely a nonequilibrium solid solution. Negligible were accompanied the mechanochemical synthesis of NiS and ZnS from elemental powders. These sulfides were formed for short milling times. In contrast, sulfides of tungsten were not formed even when rather long milling times were employed. The survey of mechanochemical reactions presented here further reinforces the concept that this low temperature synthesis method is a robust process route for production of a wide range of materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Benjamin, J. S., Metall. Trans. 1, 2943 (1970).CrossRefGoogle Scholar
2.Gilman, P. S. and Benjamin, J. S., Annu. Rev. Mater. Sci. 13, 279 (1983).CrossRefGoogle Scholar
3.Aning, A. O., Courtney, T. H., and Wang, Z., submitted for publication.Google Scholar
4.Benn, R. C., Mirchandani, P. K., and Watwe, A. S., Solid State Powder Processing, edited by Clauer, A. H. and deBarbadillo, J. J. (TMS, Warrendale, PA, 1990), p. 157.Google Scholar
5.Atzmon, M., Solid State Powder Processing, edited by Clauer, A. H. and deBarbadillo, J. J. (TMS, Warrendale, PA, 1990), p. 173.Google Scholar
6.Han, S. H., Gschneider, K. A., Jr., and Beaudry, B. J., Scripta Metall. et Mater. 25, 295 (1991).CrossRefGoogle Scholar
7.Wang, J. S. C., Donnelly, S. G., Godavarti, P., and Koch, C. C., Int. J. Powder Metall. 24, 315 (1988).Google Scholar
8.McDermott, B. T. and Koch, C. C., Scripta Metall. 21, 305 (1987).Google Scholar
9.Schwarz, R. B., Mater. Sci. Eng. 97, 71 (1988).CrossRefGoogle Scholar
10.Petzoldt, F., J. Less-Common Metals 140, 85 (1988).CrossRefGoogle Scholar
11.Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
12.Tiainen, T. J. and Schwarz, R. B., J. Less-Common Metals 140, 119 (1988).CrossRefGoogle Scholar
13.Kimura, H., Kimura, M., and Takada, F., J. Less-Common Metals 140, 113 (1988).CrossRefGoogle Scholar
14.Kimura, H. and Takada, F., Mater. Sci. Eng. 91, 53 (1988).CrossRefGoogle Scholar
15.Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
16.Schultz, L., Mater. Sci. Eng. 97, 15 (1988).CrossRefGoogle Scholar
17.Schwarz, R. B. and Petrich, R. R., J. Less-Common Metals 140, 171 (1988).CrossRefGoogle Scholar
18.Maurice, D. R. and Courtney, T. H., Metall. Trans.A 21A, 289 (1990).CrossRefGoogle Scholar
19.Courtney, T. H. and Maurice, D. R., Solid State Powder Processing, edited by Clauer, A. H. and deBarbadillo, J. J. (TMS, Warrendale, PA, 1990), p. 3.Google Scholar
20.Davis, R. M., McDermott, B., and Koch, C. C., Metall. Trans. A 19A, 2867 (1988).CrossRefGoogle Scholar
21.Clark, G. L. and Rowan, R., J. Am. Chem. Soc. 63, 1302 (1941).CrossRefGoogle Scholar
22.Dachille, F. and Roy, R., Nature 186, No. 4718, 34 (1960).CrossRefGoogle Scholar
23.Senna, M. and Kuno, H., J. Am. Ceram. Soc. 54, 259 (1971).CrossRefGoogle Scholar
24.Hikichi, Y., Sasaki, T., Murayama, K., Nomura, T., and Miyamoto, M., J. Am. Ceram. Soc. 72, 1073 (1989).CrossRefGoogle Scholar
25.Gasparoux, H. and Lambert, B., Carbon 8, 573 (1970).CrossRefGoogle Scholar
26.Ogawa, I., Yoshida, H., and Kobayashi, K., J. Mater. Sci. 16, 2181 (1981).CrossRefGoogle Scholar
27.Juhasz, Z., Sprechsaal 118, 110 (1985).Google Scholar
28.Steinike, U., Muller, B., and Hennig, H. P., Krist. Tech. 14, 1469 (1979).CrossRefGoogle Scholar
29.Ikeya, I. and Senna, M., J. Mater. Sci. 22, 2497 (1987).CrossRefGoogle Scholar
30.Ohtsuka, M. and Kaneniwa, N., Chem. Phar. Bull. 32, 1071 (1984).CrossRefGoogle Scholar
31.Lin, I. J. and Nadiv, S., Mater. Sci. Eng. 39, 193 (1979).CrossRefGoogle Scholar
32.Lin, I. J. and Nadiv, S., Proc. 15th Int. Congress on Mineral Processing, Cannes, France, Edition Gedim, St. Etienne Cedex, France, 223 (1985).Google Scholar
33.Aladekomo, J. B. and Bragg, R. M., Carbon 28, 897 (1990).CrossRefGoogle Scholar
34.Tidjani, M., Lachter, J., Kabre, T. S., and Bragg, R. H., Carbon 24, 447 (1986).CrossRefGoogle Scholar
35.Solomon, J. A. and Mains, G. J., Fuel 56, 302 (1977).CrossRefGoogle Scholar
36.Andreeva, T. A. and Molchanov, V. I., Solid Fuel Chem. 10, 63 (1977).Google Scholar
37.Bokros, J. C., Akins, R. J., Shin, H. S., Hambold, A. D., and Agarawal, N. K., CHEMTECH, 40, Jan. (1977).Google Scholar
38.Matteazzi, P. and LeCaer, G., J. Am. Ceram. Soc. 74, 1382 (1991).CrossRefGoogle Scholar
39.Senna, M. and Kuno, H., J. Am. Ceram. Soc. 56, 492 (1973).CrossRefGoogle Scholar
40.Nakatani, Y., Sakai, M., Nakatani, S., and Matsuoka, M., J. Mater. Sci. Lett. 2, 129 (1983).CrossRefGoogle Scholar
41.Lefelshtel, N., Nadiv, S., Lin, I. J., and Zimmels, Y., Powder Technol. 20, 211 (1978).CrossRefGoogle Scholar
42.Torres Sanchez, R. M., Curt, E. M., Volzone, C., Marcader, R. C., and Cavalieri, A. L., Mater. Res. Bull. XXV, 553 (1990).CrossRefGoogle Scholar
43.Schultz, L., Wecker, J., and Hellstern, E., J. Appl. Phys. 61, 3583 (1987).CrossRefGoogle Scholar
44.LeCaer, G., Bauer-Grosse, E., Pianelli, A., Bouzy, E., and Matteazzi, P., J. Mater. Sci. 25, 4726 (1990).CrossRefGoogle Scholar
45.Viswanadham, R. K., Mannan, S. K., and Kumar, S., Scripta Metall. 22, 1011 (1988).CrossRefGoogle Scholar
46.The Sulfur Data Book, edited by Tuller, W. N. (McGraw-Hill, New York, 1954).Google Scholar