Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T21:45:45.999Z Has data issue: false hasContentIssue false

Microwave-assisted synthesis of various gallium oxyhydroxide nanorods and their controllable conversion into different gallium oxide polymorphs

Published online by Cambridge University Press:  31 January 2011

Suxiang Ge
Affiliation:
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China; and Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan 461000, China
Lizhi Zhang*
Affiliation:
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
Zhi Zheng*
Affiliation:
Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan 461000, China
*
Get access

Abstract

Various α-GaOOH nanorods were synthesized through a microwave-assisted method at 80 °C. In the synthesis, Ga(NO3)3 was used as the gallium source, and urea, L-cysteine, and EDTA disodium salt were used as the additives. The thermal decomposition of the as-prepared α-GaOOH nanorods could selectively produce α-, β-, and ε-Ga2O3 nanorods. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and cathodoluminescence were used to characterize the resulting samples. On the basis of characterization results, the possible growth mechanisms of these various GaOOH nanorods were proposed. This study provides a controllable method to prepare various gallium oxyhydroxide and gallium oxide nanorods.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wong, E.W., Sheehan, P.E., and Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotube. Science 277, 1971 (1997).CrossRefGoogle Scholar
2Kar, S., Pal, B.N., Chaudhuri, S., and Chakravorty, D.: One-dimensional ZnO nanostructure arrays: Synthesis and characterization. J. Phys. Chem. B 110, 4605 (2006).CrossRefGoogle ScholarPubMed
3Edwards, D.D., Mason, T.O., Goutenoire, F., and Poeppelmeier, K.R.: A new transparent conducting oxide in the Ga2O3–In2O3–SnO2 system. Appl. Phys. Lett. 70, 1706 (1997).CrossRefGoogle Scholar
4Ueda, N., Hosono, H., Waseda, R., and Kawazoe, H.: Synthesis and control of conductivity of ultraviolet transmitting b-Ga2O3 single crystals. Appl. Phys. Lett. 70, 3561 (1997).CrossRefGoogle Scholar
5Hajnal, Z., Miro, J., Kiss, G., Reti, F., Deak, P., and Herndon, R.C.: Role of oxygen vacancy defect states in the n-type conduction of b-Ga2O3. J. Appl. Phys. 86, 3792 (1999).CrossRefGoogle Scholar
6Binet, L. and Gourier, D.: Origin of the blue luminescence of b-Ga2O3. J. Phys. Chem. Solids 59, 1241 (1998).CrossRefGoogle Scholar
7Ogita, M., Saika, N., Nakanishi, Y., and Hatanaka, Y.: Ga2O3 thin films for high-temperature gas sensors. Appl. Surf. Sci. 142, 188 (1999).CrossRefGoogle Scholar
8Pohle, R., Fleischer, M., and Meixner, H.: In situ infrared emission spectroscopic study of the adsorption of H2O and hydrogen-containing gases on Ga2O3 gas sensors. Sens. Actuators, B 68, 151 (2000).CrossRefGoogle Scholar
9Hou, Y.D., Wu, L., Wang, X.C., Ding, Z.X., Li, Z.H., and Fu, X.Z.: Photocatalytic performance of a-, b-, and g-Ga2O3 for the destruction of volatile aromatic pollutants in air. J. Catal. 250, 12 (2007).CrossRefGoogle Scholar
10Roy, R., Hill, V.G., and Osborn, E.F.: Polymorphism of Ga2O3 and the system Ga2O3-H2O. J. Am. Chem. Soc. 74, 719 (1952).CrossRefGoogle Scholar
11Hori, K., Fukuta, M., Shimooka, H., Kohiki, S., Shishido, T., Oku, M., Mitome, M., and Bando, Y.: Growth of b-Ga2O3 nanocolumns crossing perpendicularly each other on MgO (100) surface. J. Alloys Compd. 390, 261 (2005).CrossRefGoogle Scholar
12Mitome, M., Kohiki, S., Hori, K., Fukuta, M., and Bando, Y.: Epitaxial growth of b-Ga2O3 nanocolumns on MgO substrate. J. Cryst. Growth 286, 240 (2006).CrossRefGoogle Scholar
13Hu, J.Q., Li, Q., Meng, X.M., Lee, C.S., and Lee, S.T.: Synthesis of b-Ga2O3 nanowires by laser ablation. J. Phys. Chem. B 106, 9536 (2002).CrossRefGoogle Scholar
14Huang, Y., Yue, S., Wang, Z., Wang, Q., Shi, C., Xu, Z., Bai, X.D., Tang, C., and Gu, C.: Preparation and electrical properties of ultrafine Ga2O3 nanowires. J. Phys. Chem. B 110, 796 (2006).CrossRefGoogle ScholarPubMed
15Zhang, Y.C., Wu, X., Hu, X.Y., and Shi, Q.F.: A green hydrothermal route to GaOOH nanorods. Mater. Lett. 61, 1497 (2007).CrossRefGoogle Scholar
16Liu, X.H., Qiu, G.Z., Zhao, Y., Zhang, N., and Yi, R.: Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods. J. Alloys Compd. 439, 275 (2007).CrossRefGoogle Scholar
17Zhang, J., Liu, Z.G., Lin, C.K., and Lin, J.: A simple method to synthesize b-Ga2O3 nanorods and their photoluminescence properties. J. Cryst. Growth 280, 99 (2005).CrossRefGoogle Scholar
18Hou, Y.D., Wang, X.C., Wu, L., Ding, Z.X., and Fu, X.Z.: Efficient decomposition of benzene over a b-Ga2O3 photocatalyst under ambient conditions. Environ. Sci. Technol. 40, 5799 (2006).CrossRefGoogle Scholar
19Wu, X.C., Song, W.H., Huang, W.D., Pu, M.H., Zhao, B., Sun, Y.P., and Du, J.J.: Crystalline gallium oxide nanowires: Intensive blue light emitters. Chem. Phys. Lett. 328, 5 (2000).CrossRefGoogle Scholar
20Khan, A.Z., Jadwisienczak, W.M., and Kordesh, M.E.: One-step preparation of ultra-wide b-Ga2O3 microbelts and their photoluminescence study. Physica E (Amsterdam) 35, 207 (2006).CrossRefGoogle Scholar
21Qian, H.S., Gunawan, P., Zhang, Y.X., Lin, G.F., Zheng, J.W., and Xu, R.: Template-free synthesis of highly uniform a-GaOOH spindles and conversion to a-Ga2O3 and b-Ga2O3. Cryst. Growth Des. 8, 1282 (2008).CrossRefGoogle Scholar
22Zhao, Y.Y., Frost, R.L., Yang, J., and Martens, W.N.: Size and morphology control of gallium oxide hydroxide GaO(OH), nanoto micro-sized particles by soft-chemistry route without surfactant. J. Phys. Chem. C 112, 3568 (2008).CrossRefGoogle Scholar
23Patra, C.R., Mastai, Y., and Gedanken, A.: Microwave–assisted synthesis of submicrometer GaO(OH) and Ga2O3 rods. J. Nanopart. Res. 6, 509 (2004).CrossRefGoogle Scholar
24Shaw, W.H.R. and Bordeaux, J.J.: The decomposition of urea in aqueous media. J. Am. Chem. Soc. 77, 4729 (1955).CrossRefGoogle Scholar
25Westin, K.J. and Rasmuson, A.C.: Nucleation of calcium carbonate in presence of citric acid, DTPA, EDTA and pyromellitic acid. J. Colloid Interface Sci. 282, 370 (2005).CrossRefGoogle ScholarPubMed
26Luo, Y.M., Hou, Z.Y., Gao, J., Jin, D.F., and Zheng, X.M.: Synthesis of high crystallization b-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route. Mater. Sci. Eng., B 140, 123 (2007).CrossRefGoogle Scholar
27Chun, H.J., Choi, Y.S., Bae, S.Y., Seo, H.W., Hong, S.J., Park, J., and Yang, H.: Controlled structure of gallium oxide nanowires. J. Phys. Chem. B 107, 9042 (2003).CrossRefGoogle Scholar
28Jiang, X.C., Sun, L.D., and Yan, C.H.: Ordered nanosheet-based YBO3: Eu3+ assemblies: Synthesis and tunable luminescent properties. J. Phys. Chem. B 108, 3387 (2004).CrossRefGoogle Scholar
29Ma, L., Chen, W.X., Zhao, J., and Zheng, Y.F.: Pairing morphology with gene expression in thyroid hormone-induced intestinal remodeling and identification of a core set of TH-induced genes across tadpole tissues. J. Cryst. Growth. 303, 590 (2007).CrossRefGoogle Scholar
30Hill, R.J.: Crystal structure refinement and electron density distribution in diaspore. Phys. Chem. Miner. 5, 179 (1979).CrossRefGoogle Scholar
31Klug, A. and Farkas, L.: Structural investigations of polycrystalline diaspore samples by x-ray powder diffraction. Phys. Chem. Miner. 7, 138 (1981).CrossRefGoogle Scholar
32Jia, B.P. and Gao, L.: Growth of well-defined cubic hematite single crystals: Oriented aggregation and ostwald ripening. Cryst. Growth Des. 8, 1372 (2008).CrossRefGoogle Scholar