Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T11:15:10.408Z Has data issue: false hasContentIssue false

Microwave sintering of high-density, high thermal conductivity AlN

Published online by Cambridge University Press:  31 January 2011

Geng-fu Xu
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
Tayo Olorunyolemi
Affiliation:
Institute of Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742
Otto C. Wilson
Affiliation:
Department of Materials and Nuclear Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742
Isabel K. Lloyd
Affiliation:
Department of Materials and Nuclear Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742
Yuval Carmel
Affiliation:
Institute of Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742
Get access

Abstract

Microwave energy was used to sinter high thermal conductivity AlN ceramics (160–225 W/mK). The effects of sintering time, temperature, and amount of additive on phase composition, phase distribution, densification behavior, grain growth, and thermal conductivity were studied. The thermal conductivity of AlN was greatly improved by the addition of Y2O3, extended sintering time, and higher sintering temperatures. Thermal conductivity development in Y2O3-doped AlN showed two distinctive time regimes: (i) densification, where full densification, secondary phase formation, concentration and segregation, and rapid purification of AlN grains occur, accompanied by a large increase in thermal conductivity; (ii) postdensification, where grain growth and secondary phase sublimation/evaporation occur, yielding a further increase in thermal conductivity. Our results indicate that microwave sintering is a promising approach for synthesis of high thermal conductivity AlN ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Watari, K., J. Ceram. Soc. Jpn. 109, S7 (2001).CrossRefGoogle Scholar
2.Baik, Y. and Drew, R.A.L., Key Eng. Mater. 122–124, 553 (1996).CrossRefGoogle Scholar
3.Sheppard, L.M., Ceram. Bull. 69(11), 1801 (1990).Google Scholar
4.Kurokawa, Y., Utsumi, K., Takamizawa, H., Kamata, T., and Noguchi, S., IEEE Transactions on Components, Hybrids, and Manufacturing Technology Vol. CHMT-8, No. 2 (IEEE, Piscataway, NJ, 1990).Google Scholar
5.Miyashiro, F., Iwase, N., Akihiko, T., Ueno, Fumio, Nakahashi, M., and Takahashi, Takashi, IEEE Transactions on Components, Hybrids, and Manufacturing Technology Vol. 13, No. 2 (IEEE, Piscataway, NJ, 1985).Google Scholar
6.Shinozaki, K., Goto, Y., Tasori, K., Ueno, F., Anzai, K., and Tsuge, A., Proceedings of the 24th Symposium on Basic Science of Ceramics, Yogyo Kyokai, 1D13 (1986), p. 175.Google Scholar
7.Xu, G., Ph.D. thesis, University of Maryland (2001).Google Scholar
8.Virkar, A.F., Jackson, T.B., and Cutler, R.A., J. Am. Ceram. Soc. 72, 2031 (1989).CrossRefGoogle Scholar
9.Hashimoto, N. and Yoden, H., J. Am. Ceram. Soc. 75, 2089 (1992).CrossRefGoogle Scholar
10.Lecompte, J.P., Jarriage, J., and Mexmain, J., in Progress in Nitrogen Ceramics, edited by Riley, F.L. (Martinus Nijhoff Publishers, Boston, MA, 1983), p. 293.CrossRefGoogle Scholar
11.Trontelj, M. and Kolar, D., J. Mater. Sci. Lett. 8, 136 (1973).Google Scholar
12.Sutton, W.H., Am. Ceram. Soc. Bull. 68, 376 (1989).Google Scholar
13.Clark, D.E., Folz, D.E., Shultz, R.L., Fathi, Z., and Cozzi, A.D., MRS Bull. 18(11), 41 (1993).CrossRefGoogle Scholar
14.Bykov, Yu.V., Rybakov, K.I., and Semenov, V.E., J. Phys. D: Appl. Phys. 34, R55 (2001).CrossRefGoogle Scholar
15.Janney, M.A. and Kimrey, H.D., in Microwave Processing of Materials II, edited by Snyder, W.B., Sutton, W.H., Iskander, M.F., and Johnson, D.L. (Mater. Res. Soc. Symp. Proc. 189, Pittsburgh, PA, 1991), pp. 215217.Google Scholar
16.Wroe, R. and Rowley, A.T., J. Mater. Sci. 31, 2019 (1996).CrossRefGoogle Scholar
17.Groombridge, P., Oloyede, A., and Siores, E., Trans. ASME, J. Manuf. Sci. Eng. 122, 253 (2000).CrossRefGoogle Scholar
18.Janney, M.A., Kimrey, Hal D., and Kiggans, James O., in Microwave Processing of Materials III, edited by Beatty, R.L., Sutton, W.H., and Iskander, M.F. (Mat. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), pp. 173185.Google Scholar
19.Holcombe, C.E. and Dykes, N.L., J. Mater. Sci. 26, 3730 (1991).CrossRefGoogle Scholar
20.Holcombe, E. and Dykes, N.L., in Ceramic Transactions Vol. 21, Microwaves: Theory and Application in Materials Processing, edited by Clark, D.E., Gac, F.D., and Sutton, W.H. (American Ceramic Society, Westerville, OH, 1991), pp. 375384.Google Scholar
21.Xu, G., Olorunyolemi, T., Carmel, Y., Lloyd, I.K., and Wilson, O.C. Jr., J. Am. Ceram. Soc. (submitted for publication).Google Scholar
22.Pert, E., Carmel, Y., Birnboim, A., Olorunyolemi, T., Gershon, D., Calame, J., Lloyd, I.K., and Wilson, O.C. Jr., J. Am. Ceram. Soc. 84, 1981 (2001).CrossRefGoogle Scholar
23.Xu, G., Lloyd, I.K., Carmel, Y., Olorunyolemi, T., and Wilson, O.C. Jr., J. Mater. Res. 16, 2850 (2001).CrossRefGoogle Scholar
24.Mendelson, M.I., J. Am. Ceram. Soc. 52, 443 (1969).CrossRefGoogle Scholar
25.Hirano, M., Kato, K., Isobe, T., and Hirano, T., J. Mater. Sci. 28, 4725 (1993).CrossRefGoogle Scholar
26.Cheng, J.P., Agrawal, Dinesh, Zhang, Yunjin, Drawl, B., and Roy, R., Am. Ceram. Soc. Bull. (9), 71 (2000).Google Scholar
27.Roth, R.S., Phase Diagram for Ceramists (Am. Ceram. Soc., Westerville, OH, 1995), Fig. 2344.Google Scholar
28.Jackson, T.B., Virkar, A.V., More, K.L., Dinwiddie, R.B., and Cutler, R.A., J. Am. Ceram. Soc. 80, 1421 (1997).CrossRefGoogle Scholar
29.Tajika, M., Matsubara, H., and Rafaniello, W., J. Ceram. Soc. Jpn. 105, 928 (1997).CrossRefGoogle Scholar
30.Mitra, S., Dutta, G., and Dutta, I., J. Am. Ceram. Soc. 78, 2334 (1995).CrossRefGoogle Scholar
31.Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids, 19, 35 (1961).CrossRefGoogle Scholar
32.Alexander, K.B., Becher, P.F., Waters, S.B., and Bleier, A., J. Am. Ceram. Soc. 77, 939 (1994).CrossRefGoogle Scholar
33.Hirano, M., Kato, K., Isobe, T., and Hirano, T., J. Mater. Sci. 28, 4725 (1993).CrossRefGoogle Scholar
34.Kuramote, N., Taniguchi, H., and Aso, I., Am. Ceram. Soc. Bull. 68(4), 883 (1989).Google Scholar
35.Kurokawa, Y., Utsumi, K., and Takamizawa, H., J. Am. Ceram. Soc. 71, 588 (1989).CrossRefGoogle Scholar
36.Ichinose, N., Mater. Chem. Phys. 42, 176 (1995).CrossRefGoogle Scholar
37.Kawati, K., Kawamoto, M., and Ishizaki, K., J. Mater. Sci. 26, 4727 (1991).Google Scholar
38.Rybakov, K. and Semenov, V.E., Phys. Rev. B 52, 3030 (1995).CrossRefGoogle Scholar
39.Birnboim, A., Calame, J.P., and Carmel, Y., J. Appl. Phys. 81, 1 (1999).Google Scholar