Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T22:29:00.752Z Has data issue: false hasContentIssue false

Microstructures and solidification behavior in Y–Ba–Cu–O/Ag superconducting leads

Published online by Cambridge University Press:  31 January 2011

J. Maeda
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku Tokyo 135-0062, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku Tokyo 135-0062, Japan
Get access

Abstract

The microstructures and the solidification behavior in unidirectionally solidified Y–Ba–Cu–O/Ag (YBCO/Ag) superconducting current leads were investigated. The solidification model of this system was discussed by the Y2Ba1Cu1O5–Ba3Cu5Ox–Ag quasiternary phase diagrams constructed by analysis of the solute compositions in the melt. The diffusion fields and the spacing between silver particles in the YBCO/Ag system were discussed. The relationship between the shapes of entrapped silver particulates, the miscibility gap in the phase diagram, and the wetting behavior at the growth interface in two-dimensional monotectic reactions were also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Imagawa, Y., Kakimoto, K., and Shiohara, Y., Physica C 280, 245 (1997).CrossRefGoogle Scholar
2.Oka, T., Itoh, Y., Yanagi, Y., Tanaka, H., Takashima, S., Yamada, Y., and Mizutani, U., Physica C 200, 55 (1992).CrossRefGoogle Scholar
3.Nakamura, Y. and Fujimoto, H., in Proceedings of the 58th Meeting on Cryogenics and Superconductivity (1998) p. 161.Google Scholar
4.Maeda, J., Izumi, T., and Shiohara, Y., Adv. in Superconductivity XI, (1999, in press).Google Scholar
5.Maeda, J., Nakamura, Y., Izumi, T., and Shiohara, Y., Supercond. Sci. Technol (in press).Google Scholar
6.Zhang, Ch., Kulpa, A., and Chaklade, A.C.D, Physica C 67, 252 (1995).Google Scholar
7.Kozlowski, G., Maartense, I., Spyker, R., Leese, R., and Oberly, C.E., Physica C 173, 195 (1991).CrossRefGoogle Scholar
8.Krauns, Ch., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B. 96, 207 (1994).CrossRefGoogle Scholar
9.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Cryst. Growth, 128, 757 (1993).CrossRefGoogle Scholar
10.Rutter, J.W. and Chalmers, B., Can. J. Phys. 31, 15 (1953).CrossRefGoogle Scholar
11.Tiller, W.A., Jackson, K., Rutter, J.W., Chalmers, B., Acta Metall. 1, 428 (1953).CrossRefGoogle Scholar
12. Metal Data Book, 3rd ed. (The Japan Institute of Metals, Maruzen, Japan, 1993), p. 15.Google Scholar
13. Metals Handbook, 8th ed. (American Society for Metals, Metals Park, OH, 1973), p. 254.Google Scholar
14.Namikawa, Y., Egami, M., and Shiohara, Y., J. Jpn. Inst. Metals, 10, 1047 (1995).CrossRefGoogle Scholar
15.Furuya, K., Nakamura, Y., Izumi, T., and Shiohara, Y., Adv. Supercond. 6, 795 (1994).CrossRefGoogle Scholar
16.Powers, A.E.. Conductivity in Aggregates, AEC-Report KAPL-2145 (1961), available from Office of Technical Services, U.S. Dept. of Commerce.Google Scholar
17.Cahn, J.W., Met. Trans. AIME 10A, 119 (1979).CrossRefGoogle Scholar
18.Shangguan, D.K. and Hunt, J.D., Metall. Trans. 23A, 1111 (1992).CrossRefGoogle Scholar
19.Maeda, J. and Shiohara, Y., J. Jpn. Inst. Metals 63, 397 (1999).CrossRefGoogle Scholar
20.Nakamura, Y., Tachibana, K., Kato, S., Ban, T., Yoo, S.I. and Fujimoto, H., Physica C 294, 302 (1998).CrossRefGoogle Scholar
21.Cima, M.J., Flemings, M.C., Figueredo, A.M., Nakabe, M., Ishii, H., Brody, H.D., and Haggerty, J.S., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
22.Jackson, K.A. and Hunt, J.D., Trans. Metall. Soc. AIME 236, 1129 (1966).Google Scholar
23.Derby, B. and Favier, J.J., Acta Met. 31, 123 (1983).CrossRefGoogle Scholar
24.Grugel, R.N. and Hallawell, A., Met. Trans. 15A, 1003 (1984).CrossRefGoogle Scholar