Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T04:36:29.203Z Has data issue: false hasContentIssue false

Microstructures and mechanical properties of ultrafine-grained Ti foil processed by equal-channel angular pressing and cold rolling

Published online by Cambridge University Press:  06 January 2012

Y. T. Zhu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Y. R. Kolobov
Affiliation:
Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 2/1, Akademicheskaya, Tomsk 634021, Russia
G. P. Grabovetskaya
Affiliation:
Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 2/1, Akademicheskaya, Tomsk 634021, Russia
V. V. Stolyarov
Affiliation:
Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000, Russia
N. V. Girsova
Affiliation:
Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 2/1, Akademicheskaya, Tomsk 634021, Russia
R. Z. Valiev
Affiliation:
Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000, Russia
Get access

Abstract

We processed coarse-grained Ti and equal-channel angular pressing (ECAP) processed ultrafine-grained (UFG) Ti into 20-μm-thick Ti foils by cold rolling and intermediate annealing. The foils produced from rolling the UFG Ti exhibit a homogeneous nanostructure, while foils produced from rolling the coarse-grained Ti exhibit heterogeneous structures with a mixture of nanostructured regions and coarse-grained regions. The former foils also have higher strength and ductility and exhibit uniform deformation over a larger strain range at room temperature than the latter ones. This work demonstrated the advantage and viability of producing nanostructured Ti foil by rolling ECAP-processed UFG Ti stock.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, T., Lee, J., Kobayashi, T., and Aoki, H., J. Mater. Sci.: Mater. Med. 7, 355 (1996).Google Scholar
Wang, K., Mater. Sci. Eng. A 213, 134 (1996).CrossRefGoogle Scholar
Ungersböck, A., Perren, S.M., and Pohler, O., J. Mater. Sci.: Mater. Med. 5, 788 (1994).Google Scholar
Sennerby, L., Thomsen, P., and Ericson, L.E., J. Mater. Sci.: Mater. Med. 3, 262 (1992).Google Scholar
Johansson, C.B., Albrektsson, T., Ericson, L.E., and Thomson, P., J. Mater. Sci.: Mater. Med. 3, 126 (1992).Google Scholar
Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C., J. Mater. Res. 17, 5 (2002).CrossRefGoogle Scholar
Bridgman, P.W., Studies in Large Plastic Flow and Fracture (McGraw-Hill, New York, 1952).Google Scholar
Schmid, E. and Boas, W., Plasticity of Crystals, with Special Reference to Metals (Chapman and Hall, London, U.K., 1968).Google Scholar
Brandes, E.A. and Brook, G.B., Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann, Oxford, U.K., 1992), Chap. 22.Google Scholar
Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C., and Valiev, R.Z., Mater. Sci. Eng. A 299, 59 (2001).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., and Valiev, R.Z., Mater. Sci. Eng. A 303, 82 (2001).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., and Valiev, R.Z., J. Nanosci. Nanotechnol. 1, 237 (2001).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C., and Valiev, R.Z., Mater. Sci. Eng. A 343, 43 (2003).CrossRefGoogle Scholar
Jia, D., Wang, Y.M., Ramesh, K.T., Ma, E., Zhu, Y.T., Valiev, R.Z., Appl. Phys. Lett. 79, 611 (2001).CrossRefGoogle Scholar
Wang, Y.M., Ma, E., and Chen, M.W., Appl. Phys. Lett. 80, 2395 (2002).CrossRefGoogle Scholar
Zhang, X., Huang, H., Scattergood, R.O., Narayan, J., Koch, C.C., Sergueeva, A.V., and Mukherjee, A.K., Appl. Phys. Lett. 81, 823 (2002).CrossRefGoogle Scholar
Horita, Z., Fujinami, T., Nemoto, M., and Langdon, T.G., Metall. Mater. Trans. 31A, 691 (2000).CrossRefGoogle Scholar
Lee, S., Utsunnomiya, A., Akamatsu, H., Neishi, K., Furukawa, M., Horita, Z., and Langdon, T.G., Acta Mater. 50, 553 (2002).CrossRefGoogle Scholar
Furukawa, M., Horita, Z., Nemoto, M., and Langdon, T.G., Mater. Sci. Eng. A 324, 82 (2002).CrossRefGoogle Scholar
Horita, Z., Furukawa, M., Nemoto, M., Barnes, A.J., and Langdon, T.G., Acta Mater. 48, 3633 (2000).CrossRefGoogle Scholar
McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P., and Mukherjee, A.K., Nature 398, 684 (1999).CrossRefGoogle Scholar
Valiev, R.Z., Islangaliev, K.K., and Alexandrov, I.V., Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
Sergueeva, A.V., Stolyarov, V.V., Valiev, R.Z., and Mukhejee, A.K., Mater. Sci. Eng. A 323, 318 (2002).CrossRefGoogle Scholar
Mishra, R.S., Valiev, R.Z., McFadden, S.X., Mukherjee, A.K., Mater. Sci. Eng. A 252, 174 (1998).CrossRefGoogle Scholar
Alexandrov, I.V., Zhu, Y.T., Lowe, T.C., Islamgaliev, R.K., and Valiev, R.Z., Metall. Mater. Trans. A 29, 2253 (1998).CrossRefGoogle Scholar
Zhu, Y.T., Jiang, H., Huang, J., and Lowe, T.C., Metall. and Mater. Trans. 32A, 1559 (2001).CrossRefGoogle Scholar
Huang, J., Zhu, Y.T., Jiang, H., and Lowe, T.C., Acta Mater. 49, 1497 (2001).CrossRefGoogle Scholar
Zhu, Y.T., Huang, J.Y., Gubicza, J., Ungár, T., Ma, E., and Valiev, R.Z., Metall. Mater. Trans. A (submitted).Google Scholar
NATO Investigations and Applications of Severe Plastic Deformation, edited by Lowe, T.C. and Valiev, R.Z. (Kluwer, Dordrecht, The Netherlands, 2000), pp. 347356.CrossRefGoogle Scholar
Alexandrov, I.V., Zhu, Y.T., Lowe, T.C., Islamgaliev, R.K., and Valiev, R.Z., Nanostruct. Mater. 10, 45 (1998).CrossRefGoogle Scholar
Alexandrov, I.V., Zhu, Y.T., Lowe, T.C., Islamgaliev, R.K., and Valiev, R.Z., Metall. Mater. Trans. A 29A, 2253 (1998).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., and Valiev, R.Z., Nanostruct. Mater. 11, 947 (1999).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., and Valiev, R.Z., Mater. Sci. Eng. A 282, 78 (2000).CrossRefGoogle Scholar
Wang, Y., Chen, M., Zhou, F., and Ma, E., Nature 419, 912 (2002).CrossRefGoogle Scholar