Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T04:05:10.057Z Has data issue: false hasContentIssue false

Microstructure of gas-atomized Al-20 wt. % Si-1 wt. % Ni powders studied by electron microscopy

Published online by Cambridge University Press:  03 March 2011

Byong-Taek Lee
Affiliation:
Institute for Materials Research, Tohoku Univers ity, Katahira, Aoba-ku, Sendai 980, Japan
Byong-Sun Chun
Affiliation:
Engineering Research Center for Rapidly Solidified Materials, Chungnam National University, Daejeon 302-764, Korea
Kenji Hiraga
Affiliation:
Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai 980, Japan
Get access

Abstract

The microstructure of gas-atomized Al-20 wt. % Si-1 wt. % Ni powders was investigated by electron microscopy. Primary Si crystals about 2 μm in size are homogeneously distributed in the Al matrix. Eutectic Si crystals about 50 nm in size are precipitated with the definite crystallographic relationship of 〈110〉Si ‖ 〈110〉Al. Most of the interfaces between Al and Si are semicoherently bonded with close-packed planes of {111}Si and {111}Al. The special crystallographic relationship and interfaces are interpreted by matching between Si and Al lattice spacings.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fredriksson, H., Hillert, M., and Lange, N., J. Inst. Metals 101, 285 (1973).Google Scholar
2Wang, W. and Gruzleski, J. E., Mater. Sci. Technol. 5, 471 (1989).CrossRefGoogle Scholar
3Yilmaz, F. and Elliott, R., J. Mater. Sci. 24, 2065 (1989).CrossRefGoogle Scholar
4Ichikawa, K. and Ishizuka, S., Trans. Jpn. Inst. Metals 28, 434 (1987).CrossRefGoogle Scholar
5Miwa, K., Kakamu, T., and Ohashi, T., Trans. Jpn. Inst. Metals 26, 549 (1985).CrossRefGoogle Scholar
6Yamauchi, I., Ohnaka, I., Kamamoto, S., and Fukusako, T., Trans. Jpn. Inst. Metals 27, 187 (1986).CrossRefGoogle Scholar
7Zhou, J. and Duszczyk, J., J. Mater. Sci. 25, 4541 (1990).CrossRefGoogle Scholar
8Amano, N., Odani, Y., Takeda, Y., and Akechi, K., Met. Powder Rep. 44, 186 (1989).Google Scholar
9Hirano, T. and Fujita, T., J. Jpn. Inst. Light Met. 37, 670 (1987).CrossRefGoogle Scholar
10Zhou, J., Duszczyk, J., and Korevaar, B. M., J. Mater. Sci. 26, 3041 (1991).CrossRefGoogle Scholar
11Rooyen, M. V., Colijn, P. F., Dekeijser, T. H., and Mittemeijer, E. J., J. Mater. Sci. 21, 2373 (1986).CrossRefGoogle Scholar
12Sheppard, T., Met. Technol. 8, 130 (1981).CrossRefGoogle Scholar
13Lyle, J. P. and Czebulak, W. S., Metall. Trans. 6A, 685 (1975).CrossRefGoogle Scholar
14Orowan, E., Discussion in the Symposium on Internal Stresses in Metals and Alloys (Inst. Metals, London, 1948), p. 451.Google Scholar
15Yamada, I., Inokawa, H., and Takagi, T., J. Appl. Phys. 56, 2746 (1984).CrossRefGoogle Scholar