Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T21:13:21.743Z Has data issue: false hasContentIssue false

Microstructure, mechanical, and electrical properties of Cu–Ti3AlC2 and in situ Cu–TiCx composites

Published online by Cambridge University Press:  31 January 2011

J. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Two kinds of composites (i.e., conductive and strong Cu–Ti3AlC2 composites) were prepared at 850 °C, while high-strength in situ Cu–TiCx composites were prepared by consolidation at 850 °C and then hot pressing at 1000 °C. In both kinds of composites, the reinforcements were uniformly distributed within the Cu matrix. In Cu–Ti3AlC2 composites, strengthening was achieved by the load transfer through a strong interfacial layer consisting of TiCx and Cu(Al), which was formed by the partial deintercalation of Al from Ti3AlC2. For the in situ Cu–TiCx composites, the higher modulus of TiCx as well as the highly twinned structure formed during processing contributed to the enhancement of strength. It was demonstrated that the deintercalation of Al from Ti3AlC2 formed substoichiometric Ti3AlxC2 (with x < 1), and no detrimental effect on the electrical conductivity was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kaczmar, J.W., Pietrzak, K.Wlosinski, W.: The production and application of metal matrix composite materials. J. Mater. Process. Technol. 106, 58 2000CrossRefGoogle Scholar
2Li, L., Wong, Y.S., Fuh, J.Y.H.Lu, L.: Effect of TiC in copper-tungsten electrodes on EDM performance. J. Mater. Process. Technol. 113, 563 2001CrossRefGoogle Scholar
3Nagarjuna, S., Balasubramanian, K.Sarma, D.S.: Effect of Ti additions on the electrical resistivity of copper. Mater. Sci. Eng., A 225, 118 1997CrossRefGoogle Scholar
4Lee, J., Kim, N.J., Jung, J.Y., Lee, E.S.Ahn, S.: The influence of reinforced particle fracture on strengthening of spray formed Cu-TiB2 composite. Scripta Mater. 39, 1063 1998Google Scholar
5Tjong, S.C.Lau, K.C.: Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites. Mater. Sci. Eng., A 282, 183 2000CrossRefGoogle Scholar
6Sauer, C., Weissgarber, T., Dehm, G., Mayer, J., Pusche, W.Kieback, B.: Dispersion strengthening of copper alloys. Z. Metallkd. 89, 119 1998Google Scholar
7Zarrinfar, N., Kennedy, A.R.Shipway, P.H.: Reaction synthesis of Cu-TiCx master-alloys for the production of copper-based composites. Scripta Mater. 50, 949 2004CrossRefGoogle Scholar
8Barsoum, M.W.: The M(N+1)AX(N) phases: A new class of solids; Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 2000CrossRefGoogle Scholar
9Barsoum, M.W.Raghy, T. El: Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953 1996CrossRefGoogle Scholar
10Low, I.M.: Vickers contact damage of micro-layered Ti3SiC2. J. Eur. Ceram. Soc. 18, 709 1998CrossRefGoogle Scholar
11Zhou, Y.C., Sun, Z.M., Chen, S.Q.Zhang, Y.: In-situ hot pressing solid-liquid reaction synthesis of dense titanium silicon carbide bulk ceramics. Mater. Res. Innov. 2, 142 1998CrossRefGoogle Scholar
12Zhou, Y.C., Sun, Z.M., Wang, X.H.Chen, S.Q.: Ab initio geometry optimization and ground-state properties of layered ternary carbides Ti3MC2 (M = Al, Si and Ge). J. Phys.: Condens. Matter 13, 10001 2001Google Scholar
13Bao, Y.W., Chen, J.X., Wang, X.H.Zhou, Y.C.: Shear strength and shear failure of layered machinable Ti3AlC2 ceramics. J. Eur. Ceram. Soc. 24, 855 2004Google Scholar
14Li, J.F., Pan, W., Sato, F.Watanabe, R.: Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures. Acta Mater. 49, 937 2001CrossRefGoogle Scholar
15Zhang, Y., Sun, Z.M.Zhou, Y.C.: Cu/Ti3SiC2 composite: A new electrofriction material. Mater. Res. Innov. 3, 80 1999CrossRefGoogle Scholar
16Zhang, Y.Zhou, Y.C.: Mechanical properties of Ti3SiC2 dispersion-strengthened copper. Z. Metallkd. 91, 585 2000Google Scholar
17Zhou, Y.C.Gu, W.L.: Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites. Z. Metallkd. 95, 50 2004CrossRefGoogle Scholar
18Wu, J.Y., Zhou, Y.C., Wang, J.Y., Wang, W.Yan, C.K.: Interfacial reaction between Cu and Ti2SnC during processing of Cu-Ti2SnC composite. Z. Metallkd. 96, 1314 2005CrossRefGoogle Scholar
19Wu, J.Y., Zhou, Y.C.Wang, J.Y.: Tribological behavior of Ti2SnC particulate reinforced copper matrix composites. Mater. Sci. Eng., A 422, 266 2006CrossRefGoogle Scholar
20Zhou, Y.C., Chen, B.Q., Wang, X.H.Yan, C.K.: Mechanical properties of Ti3SiC2 particulate reinforced copper prepared by hot pressing of copper coated Ti3SiC2 and copper powder. Mater. Sci. Technol. 20, 661 2004CrossRefGoogle Scholar
21Pawlek, F.Reichel, K.: The influence of constituents on the electrical conductivity of copper. Z. Metallkd. 47, 347 1956Google Scholar
22Zhou, Y.C., Wang, X.H., Sun, Z.M.Chen, S.Q.: Electronic and structural properties of the layered ternary carbide Ti3AlC2. J. Mater. Chem. 11, 2335 2001CrossRefGoogle Scholar
23Tzenov, N.V.Barsoum, M.W.: Synthesis and characterization of Ti3AlC2. J. Am. Ceram. Soc. 83, 825 2000CrossRefGoogle Scholar
24Wang, X.H.Zhou, Y.C.: Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 50, 3141 2002CrossRefGoogle Scholar
25Zhang, J., Wang, J.Y.Zhou, Y.C.: Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu-Ti3AlC2 composites. Acta Mater. 55, 4381 2007CrossRefGoogle Scholar
26Wang, X.H.Zhou, Y.C.: Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J. Mater. Chem. 12, 455 2002CrossRefGoogle Scholar
27ASTM Standard E 18-84 Standard test methods for Rockwell hardness of metallic materials 1984Google Scholar
28Wang, J.Y., Zhou, Y.C., Liao, T., Zhang, J.Lin, Z.J.: Phase stability of Ti2AlC suffering Al vacancy by first-principles investigations. Scripta Mater. 58, 227 2008CrossRefGoogle Scholar
29Rowcliffe, D.J.Hollox, G.E.: Hardness anisotropy, deformation mechanisms and brittle-to-ductile transition in carbide. J. Mater. Sci. 6, 1270 1971CrossRefGoogle Scholar
30Cahn, R.W., Haasen, P.Kramer, E.J.Material Science and Technology, Vol. 8, Wiley-VCH GmbH & Co. Weinheim 1996 285Google Scholar
31Hugosson, H.W., Korzhavyi, P., Jansson, U., Johansson, B.Eriksson, O.: Phase stabilities and structural relaxations in substoichiometric TiC1–x. Phys. Rev. B: Condens. Matter 63, 165116 2001CrossRefGoogle Scholar
32Wu, J.Y.: Synthesis and properties of Ti2SnC strengthened Cu matrix composites. PhD Thesis, No. 62, Inst. Met. Res. CAS, 2005Google Scholar
33Zhou, Y.Sun, Z.: Micro-scale plastic deformation of polycrystalline Ti3SiC2 under room-temperature compression. J. Eur. Ceram. Soc. 21, 1007 2001CrossRefGoogle Scholar
34Konopka, K.Wyrzykowski, J.W.: The effect of the twin boundaries on the yield stress of a material. J. Mater. Proc. Technol. 64, 223 1997CrossRefGoogle Scholar
35Remy, L.: Twin-slip interaction in f.c.c. crystals. Acta Metall. 25, 711 1977CrossRefGoogle Scholar
36Kamat, S.V., Hirth, J.P.Mehrabian, R.: Mechanical properties of particulate-reinforced aluminum-matrix composites. Acta Metall. 37, 2395 1989CrossRefGoogle Scholar
37Slipenyuk, A., Kuprin, V., Milman, Y., Goncharuk, V.Eckert, J.: Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater. 54, 157 2006CrossRefGoogle Scholar