Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T07:28:43.620Z Has data issue: false hasContentIssue false

Microstructure evolution in amorphous Ge/Si multilayers grown by magnetron sputter deposition

Published online by Cambridge University Press:  31 January 2011

K. Järrendahl
Affiliation:
Department of Physics, Thin Film Physics Division, Linköping University, S-581 83 Linköping, Sweden
I. Ivanov
Affiliation:
Department of Physics, Thin Film Physics Division, Linköping University, S-581 83 Linköping, Sweden
J-E. Sundgren
Affiliation:
Department of Physics, Thin Film Physics Division, Linköping University, S-581 83 Linköping, Sweden
G. Radnóczi
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, P.O. Box 76, H-1325 Budapest, Hungary
Zs. Czigany
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, P.O. Box 76, H-1325 Budapest, Hungary
J. E. Greene
Affiliation:
Department of Materials Science, the Coordinated Science Laboratory, and the Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

Microstructure evolution in amorphous Ge/Si multilayers grown by dual-target dc magnetron sputtering was investigated by cross-sectional transmission electron microscopy, x-ray diffraction, and growth simulations. In films grown under low intensity ion-irradiation conditions, the structure is columnar with low-density regions along column boundaries where layer intermixing was observed. By increasing the low-irradiation intensity (controlled by an applied negative substrate-bias), structures with smooth and well-defined layers could be grown. This was achieved at bias voltages between 80 and 140 V, depending on the sputtering gas pressure. As the ion-irradiation intensity is further increased, ion-induced intermixing degrades the layer interfaces and finally an amorphous Si1−xGex alloy forms. The combination of x-ray diffraction measurements and reflectivity calculations reveals an asymmetry between the Ge/Si and Si/Ge interface widths due, primarily, to a corresponding asymmetry in incident particle energies during the growth of alternate layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. An alternative term for superlattice is multilayer but not necessarily vice versa. Since the samples in this study cannot be considered as superlattices, the term multilayer is used throughout the text.Google Scholar
2.Deubner, W., Annin. Phys. 5, 261 (1930).CrossRefGoogle Scholar
3.Dumond, J. W. M. and Youtz, J. P., Phys. Rev. 48, 703 (1935).CrossRefGoogle Scholar
4.Esaki, L. and Tsu, R., IBM J. Res. Develop. 14, 61 (1970).Google Scholar
5.Munekata, H. and Kukimoto, H., Jpn. J. Appl. Phys. 22, L544 (1983).CrossRefGoogle Scholar
6.Abeles, B. and Tiedje, T., Phys. Rev. Lett. 51, 2003 (1983).Google Scholar
7.Conde, J. P., Chu, V., Chen, D. S., and Wagner, S., J. Appl. Phys. 75, 1638 (1994).CrossRefGoogle Scholar
8.Barzen, I., Edinger, M., Scherer, J., Ulrich, S., Jung, K., and Ehrhardt, H., Surf. Coatings Technol. 60, 454 (1993).Google Scholar
9.Döhler, G. H., J. Non-Cryst. Solids 77&78, 1041 (1985).Google Scholar
10.Kuwano, Y., Tarui, H., Takahama, T., Nishikuni, M., Hishikawa, Y., Nakamura, N., Tsuda, S., Nakano, S., and Ohnishi, M., J. Non-Cryst. Solids 97&98, 289 (1987).CrossRefGoogle Scholar
11.Tsukude, M., Hata, S., Kohda, Y., Miyazaki, S., and Hirose, M., J. Non-Cryst. Solids 97&98, 317 (1987).Google Scholar
12.Majkova, E., Luby, S., Jergel, M., Senderak, R., George, B., Vaezzadeh, M., and Ghanbaja, J., Thin Solid Films 238, 295 (1992); J. M. Slaughter, D. W. Schultze, C. R. Hills, A. Mirone, R. Stalio, R. N. Watts, C. Tarrio, T. B. Lucatorto, M. Krumrey, P. Mueller, and C. M. Falco, J. Apply. Phys. 76, 2144 (1994).Google Scholar
13.Abeles, B., Superlattices and Microstructures 5, 473 (1989).CrossRefGoogle Scholar
14.Velasquez, E. L. Z., Fantini, M. C. A., Carreño, M. N. P., Pereyra, I., Takahashi, H., and Landers, R., J. Appl. Phys. 75, 543 (1994).Google Scholar
15.Miyazaki, S., Ihara, Y., and Hirose, M., J. Non-Cryst. Solids 97&98, 887 (1987).CrossRefGoogle Scholar
16.Honma, I., Komiyama, H., and Tanaka, K., J. Appl. Phys. 66, 1170 (1989).CrossRefGoogle Scholar
17.Prokes, S. M. and Spaepen, F., Appl. Phys. Lett. 47, 234 (1985).CrossRefGoogle Scholar
18.Czigany, Zs., Radnóczi, G., Järrendahl, K., and Sundgren, J-E., J. Mater. Res. (1997, in press).Google Scholar
19.Miller, D. J., Gray, K. E., Kampwirth, R. T., and Murduck, J. M., Europhys. Lett. 19, 27 (1992).CrossRefGoogle Scholar
20.Petrov, I., Orlinov, V., Ivanov, I., and Kourtev, J., Contrib. Plasma Phys. 28, 157 (1988).Google Scholar
21.Petrov, I., Orlinov, V., Ivanov, I., and Kourtev, J., Contrib. Plasma Phys. 30, 233 (1990).Google Scholar
22.Radnóczi, G. and Barna, Á., Surf. Coating Technol. 80, 89 (1996); Á. Barna, Specimen Preparation for Transmission Electron Microscopy of Materials III, edited by R. Anderson, B. Tracy, and J. Bravman (Mater. Res. Soc. Symp. Proc. 254, Pittsburgh, PA, 1991), pp. 3–22.CrossRefGoogle Scholar
23.de Boer, D. K. G., Phys. Rev. B 44, 498 (1991).CrossRefGoogle Scholar
24.Cowley, J. M., Diffraction Physics (North-Holland/American Elsevier, Amsterdam, 1975).Google Scholar
25.Müller-Pfeiffer, S., Anklam, H-J., and Haubenreisser, W., Phys. Status Solidi 160, 491 (1990); S. Müller-Pfeiffer, H. van Kranenburg, and J. C. Lodder, Thin Solid Films 213, 143 (1992).Google Scholar
26.Westwood, W. D., J. Vac. Sci. Technol. 15, 1 (1978).Google Scholar
27.Ivanov, I., Kazansky, P., Hultman, L., Petrov, I., and Sundgren, J-E., J. Vac. Sci. Technol. A 12, 314 (1994).Google Scholar
28.Messier, R. and Yehoda, J. E., J. Appl. Phys. 58, 3739 (1985).CrossRefGoogle Scholar
29.Kardar, M., Parisi, G., and Zhang, Y-C., Phys. Rev. Lett. 56, 889 (1986).CrossRefGoogle Scholar
30.Bales, G. S., Bruinsma, R., Eklund, E. A., R, Karunasiri, O. U., Rudnick, J., and Zangwill, A., Science 249, 264 (1990).Google Scholar
31.Bales, G. S. and Zangwill, A., J. Vac. Sci. Technol. A 9, 145 (1991).Google Scholar
32.Tang, C., Alexander, S., and Bruinsma, R., Phys. Rev. Lett. 64, 772 (1990).CrossRefGoogle Scholar
33.Handbook of Chemistry and Physics, 73rd ed. (CRC Press, Boca Raton, FL, 19921993), pp. 9131, 132.Google Scholar