Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:22:20.775Z Has data issue: false hasContentIssue false

Microstructure and tensile properties of in situ Mg2Sip/AM60B composite prepared by thixoforging technology

Published online by Cambridge University Press:  29 February 2016

Suqing Zhang
Affiliation:
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu Province, China
Tijun Chen*
Affiliation:
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu Province, China
Pubo Li
Affiliation:
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu Province, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The thixoforging technology has been proved as an effective method to fabricate the in situ Mg2Sip/AM60B composite with excellent performances. The effects of reheating temperature on microstructure and tensile properties have been investigated. The results indicate that the liquid amount, the solubility of Al in α-Mg particles, and the coarsening of the α-Mg particles are changed as the reheating temperature changes, and thus the subsequent solidification behavior and plastic deformation are thereby changed. The morphology of the Mg2Si particle also varies as the reheating temperature rises owing to partial remelting operating in the edges and corners of the particles. The best ultimate tensile strength and elongation of 209 MPa and 11.9% of the thixoforged composite, which are 93 and 138% higher than the traditional permanent mold casting respectively, are obtained under the reheating temperature of 600 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mordike, B.L. and Ebert, T.: Magnesium: Properties-applications-potential. Mater. Sci. Eng. 302(1), 37 (2001).Google Scholar
Aghion, E., Bronfin, B., and Eliezer, D.: The role of the magnesium industry in protecting the environment. J. Mater. Process. Technol. 117(3), 381 (2001).Google Scholar
Eliezer, D., Aghion, E., and Froes, F.: The science, technology, and applications of magnesium. Jom-Us 50(9), 30 (1998).Google Scholar
Luo, A. and Pekguleryuz, M.O.: Cast magnesium alloys for elevated temperature applications. J. Mater. Sci. 29(20), 5259 (1994).Google Scholar
Decker, R.F.: The renaissance in magnesium. Adv. Mater. Processes 154(3), 31 (1998).Google Scholar
Lloyd, D.J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39(1), 1 (1994).Google Scholar
Chen, L. and Yao, Y.: Processing, microstructures, and mechanical properties of magnesium matrix composites: A review. Acta Metall. Sin. (Engl. Lett.) 27(5), 762 (2014).Google Scholar
Wang, J., Guo, J., and Chen, L.: TiC/AZ91D composites fabricated by in situ reactive infiltration process and its tensile deformation. Trans. Nonferrous Met. Soc. China 16(4), 892 (2006).Google Scholar
Jiang, Q.C., Wang, H.Y., Ma, B.X., Wang, Y., and Zhao, F.: Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy. J. Alloys Compd. 386(1–2), 177 (2005).Google Scholar
Wang, H.Y., Jiang, Q.C., Wang, Y., Ma, B.X., and Zhao, F.: Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy. Mater. Lett. 58(27–28), 3509 (2004).Google Scholar
Lee, D.M., Suh, B.K., Kim, B.G., Lee, J.S., and Lee, C.H.: Fabrication, microstructures, and tensile properties of magnesium alloy AZ91/SiCp composites produced by powder metallurgy. Mater. Sci. Technol. 13(7), 590 (1997).Google Scholar
Wang, H.Y., Jiang, Q.C., Zhao, Y.Q., Zhao, F., Ma, B.X., and Wang, Y.: Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites. Mater. Sci. Eng., A 372(1), 109 (2004).Google Scholar
Dong, Q., Chen, L.Q., and Zhao, M.J.: Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process. Mater. Lett. 58(6), 920 (2004).Google Scholar
Contreras, A., Leon, C.A., Drew, R.A.L., and Bedolla, E.: Wettability and spreading kinetics of Al and Mg on TiC. Scr. Mater. 48(12), 1625 (2003).Google Scholar
Wang, H.Y., Jiang, Q.C., and Li, X.L.: In situ synthesis of TiC/Mg composites in molten magnesium. Scr. Mater. 48(9), 1349 (2003).Google Scholar
Fang, C.F., Meng, L.G., Wu, N.N., and Zhang, X.G.: In situ TiB2 and Al2(Y, Gd) particles reinforced magnesium matrix composite with Al-Ti-B addition. Appl. Mech. Mater. 312, 315 (2013).Google Scholar
Iwakura, C., Nohara, S., Zhang, S.G., and Inoue, H.: Hydriding and dehydriding characteristics of an amorphous Mg2Ni–Ni composite. J. Alloys Compd. 285(1), 246 (1999).Google Scholar
Li, G.H., Gill, H.S., and Varin, R.A.: Magnesium silicide intermetallic alloys. Metall. Mater. Trans. A 24(11), 2383 (1993).Google Scholar
Wang, H., Jin, H., Chu, W., and Guo, Y.: Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method. J. Alloys Compd. 499(1), 68 (2010).Google Scholar
Xia, K. and Tausig, G.: Liquidus casting of a wrought aluminum alloy 2618 for thixoforming. Mater. Sci. Eng., A 246(1), 1 (1998).Google Scholar
Zhao, Z.D., Chen, Q.A., Tang, Z.J., and Hu, C.K.: Microstructural evolution and tensile mechanical properties of AM60B magnesium alloy prepared by the SIMA route. J. Alloys Compd. 497(1–2), 402 (2010).Google Scholar
Liu, D., Atkinson, H.V., Kapranos, P., Jirattiticharoean, W., and Jones, H.: Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys. Mater. Sci. Eng., A 361(1–2), 213 (2003).Google Scholar
Zhang, S., Chen, T., Cheng, F., and Li, P.: A comparative characterization of the microstructures and tensile properties of as-cast and thixoforged in situ AM60B-10 vol% Mg2Sip composite and thixoforged AM60B. Metals 5(1), 457 (2015).Google Scholar
Youn, S.W., Kang, C.G., and Seo, P.K.: Mechanical characteristics evaluation of hollow shape part with metal matrix composites fabricated by thixoforging process. J. Mater. Process. Technol. 130–131, 574 (2002).Google Scholar
Li, Y.D., Ma, Y., Chen, T.J., and Xu, W.J.: Effects of processing parameters on thixoformability and defects of AZ91D. Int. J. Mod. Phys. B 20(25–27), 3680 (2006).Google Scholar
Chen, T., Zhang, S., Chen, Y., Li, Y., Ma, Y., and Hao, Y.: Effects of reheating duration on the microstructures and tensile properties of thixoforged in situ Mg2Sip/AM60B composites. Acta Metall. Sin. (Engl. Lett.) 27(5), 957 (2014).Google Scholar
Chen, T.J., Huang, L.K., Huang, X.F., Ma, Y., and Hao, Y.: Effects of reheating temperature and time on microstructure and tensile properties of thixoforged AZ63 magnesium alloy. Mater. Sci. Technol. 30(1), 96 (2014).Google Scholar
Jiang, J.F., Wang, Y., Qu, J.J., Du, Z.M., and Luo, S.J.: Preparation and thixoforging of semisolid billet of AZ80 magnesium alloy. Trans. Nonferrous Met. Soc. China 20(9), 1731 (2010).Google Scholar
Phillion, A.B.: Recent experimental and numerical developments in semisolid deformation. Jom-Us 66(8), 1406 (2014).Google Scholar
Chen, T., Fu, M., and Hao, Y.: Microstructural evolution of fine-grained ZA27 alloy during partial remelting. China Foundry 7(4), 331 (2010).Google Scholar
Chen, T., Ma, Y., Wang, R., Li, Y., and Hao, Y.: Microstructural evolution during partial remelting of AM60B magnesium alloy refined by MgCO3. Trans. Nonferrous Met. Soc. China 20(9), 1615 (2010).Google Scholar
Brabazon, D., Browne, D.J., and Carr, A.J.: Mechanical stir casting of aluminium alloys from the mushy state: Process, microstructure and mechanical properties. Mater. Sci. Eng., A 326(2), 370 (2002).Google Scholar
Zhang, S.Q., Chen, T.J., Ma, Y., Li, Y.D., and Hao, Y.: Formation and evolution of liquid pools entrapped within primary particles of in situ Mg2Si/AM60B composite with fine-grains during partial remelting. Appl. Mech. Mater. 446–447, 55 (2013).Google Scholar
Chen, T.J., Lu, W.B., Ma, Y., Huang, H.J., and Hao, Y.: Semisolid microstructure of AM60B magnesium alloy refined by SiC particles. Int. J. Mater. Res. 102(12), 1459 (2011).Google Scholar
Tzimas, E. and Zavaliangos, A.: A comparative characterization of near-equiaxed microstructures as produced by spray casting, magnetohydrodynamic casting and the stress induced, melt activated process. Mater. Sci. Eng., A 289(1), 217 (2000).Google Scholar
Tzimas, E. and Zavaliangos, A.: Evolution of near-equiaxed microstructure in the semisolid state. Mater. Sci. Eng., A 289(1), 228 (2000).Google Scholar
Martinez, R.A. and Flemings, M.C.: Evolution of particle morphology in semisolid processing. Metall. Mater. Trans. A 36(8), 2205 (2005).Google Scholar
Massalski, T.B. and Okamoto, H.: Binary Alloys Phase Diagrams (ASM International, Cleveland, 1990).Google Scholar
Yu, B., Chen, D., Tang, Q., Wang, C., and Shi, D.: Structural, electronic, elastic and thermal properties of Mg2Si. J. Phys. Chem. Solids 71(5), 758 (2010).Google Scholar
Chen, P.C., Zhu, L.M., and Li, Z.: Fundamental of Metal Forming (China Machine Press, Beijing, 2003); pp. 7789.Google Scholar
Chen, C.P. and Tsao, C.Y.A.: Semi-solid deformation of non-dendritic structures-I. Phenomenological behavior. Acta Mater. 45(5), 1955 (1997).Google Scholar
Cheng, F.L., Chen, T.J., Qi, Y.S., Zhang, S.Q., and Yao, P.: Effects of solution treatment on microstructure and mechanical properties of thixoformed Mg2Sip/AM60B composite. J. Alloys Compd. 636, 48 (2015).Google Scholar
Arsenault, R.J.: Interfaces in metal matrix composites. Scr. Metall. 18(10), 1131 (1984).Google Scholar
Arsenault, R.J.: Strengthening mechanisms in particulate MMC. Scr. Metall. Mater. 25(11), 2617 (1991).Google Scholar