Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T13:01:00.471Z Has data issue: false hasContentIssue false

Microstructure and properties of superconducting sputter deposited Y–Ba–Cu–O films

Published online by Cambridge University Press:  31 January 2011

R. F. Kwasnick
Affiliation:
G.E. Corporate Research and Development, Schenectady, New York 12301
F. E. Luborsky
Affiliation:
G.E. Corporate Research and Development, Schenectady, New York 12301
E. L. Hall
Affiliation:
G.E. Corporate Research and Development, Schenectady, New York 12301
M. F. Garbauskas
Affiliation:
G.E. Corporate Research and Development, Schenectady, New York 12301
K. Borst
Affiliation:
G.E. Corporate Research and Development, Schenectady, New York 12301
M. J. Curran
Affiliation:
G.E. Corporate Research and Development, Schenectady, New York 12301
Get access

Abstract

Films of Y–Ba–Cu–O have been reproducibly prepared with metal stoichiometry near 1-2-3 by sputter deposition from a single sintered target. Twenty-seven depositions resulted in films with a standard deviation in composition of 1%. For 30 samples deposited on (100) SrTiO3 and annealed, the mean and standard deviation of the critical temperature, Tc (10% above ρ = ο), was 86.2 ± 1.4 K with a transition width (10–90%) of 1.8 ± 1.1 K. The composition and Tc were independent of film thicknesses from 0.09 to 2.5 μm. Critical currents were calculated for samples as a function of thickness from transport and from magnetization measurements. Within the considerable scatter observed of ± half an order of magnitude, the two methods agreed with each other over the thickness range studied. They were both fit with an initial Jc independent of thickness, t, for films up to about 0.3 μm thick followed by a 1/t decrease in Jc for thicker films. Metallographic examination of these films indicated microstructural features consistent with this behavior. Planar TEM images of 0.10 μm thick films showed that high Jc correlated with a film which predominantly has its c-axis normal to the film plane. An alternative structure was also seen, in which regions of the firm had their c-axis along each of the three 〈100〉 SrTiO3 directions, two in the film plane, and one normal to it. This type of film has a much lower Jc.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shah, S. I. and Carcia, P. F., Appl. Phys. Lett. 51, 2146 (1987).CrossRefGoogle Scholar
2Gavaler, J. R., Braginski, A. I., Talvacchio, J., Janocko, M. A., Forrester, M. G., and Greggi, J., Proc. MRS Spring Meeting, 1988.Google Scholar
3Kwo, J., Hsieh, T. C., Hong, M., Fleming, R.M., Liou, S.H., Davidson, B.A., and Feldman, L. C., High Temperature Superconductors, edited by Brodsky, M.B., Tuller, H. L., Dynes, R. C., and Kitazawa, K. (Mat'ls. Res. Soc, Pittsburgh, PA, 1988), Vol. 99, p. 339.Google Scholar
4Chaudhari, P., Koch, R.H., Laibowitz, R. B., McGuire, T. R., and Gambino, R.J., Phys. Rev. Lett. 58, 2684 (1987).CrossRefGoogle Scholar
5Enomoto, Y., Murakami, T., Suzuki, M., and Moriwake, K., Jpn. J. Appl. Phys. 26, L1248 (1987).CrossRefGoogle Scholar
6Hong, M., Kwo, T., Chen, C. H., Fleming, R.M., Liou, S.H., Gross, M.E., Davidson, B. A., Chen, H. S., Nakahara, S., and Boone, T., “Thin Film Processing and Characterization of High Temperature Superconductors,” AIP Conf. Proc, Feb. 1988.Google Scholar
7Liou, S.H., Hong, M., Kwo, J., Davidson, B.A., Chen, H.S., Nakahara, S., Boone, T., and Felder, R. J., Appl. Phys. Lett. 52, 1735 (1988).CrossRefGoogle Scholar
8Fujita, J., Yoshitake, T., Kamijo, A., Satoh, T., and Igaroshi, H., Appl. Phys. Lett, (to be published).Google Scholar
9Ohkuma, H., Mochiku, T., Kauke, Y., Wen, Z., Yokoyama, S., Asano, H., Iguchi, I., and Yamaka, E., Jpn. J. Appl. Phys. 26, L1484 (1987).CrossRefGoogle Scholar
10Aida, T., Fukazawa, T., Takagi, K., and Miyauchi, K., Jpn. J. Appl. Phys. 26, L1489 (1987).CrossRefGoogle Scholar
11Bao, Z. L., Wang, F.R., Jiang, Q.D., Wang, S.Z., Ye, Z.Y., Wu, K., Li, C. Y., and Yin, D. L., Appl. Phys. Lett. 51, 946 (1987).CrossRefGoogle Scholar
12Futamoto, M. and Honda, Y., Jpn. J. Appl. Phys. 27, L73 (1988).CrossRefGoogle Scholar
13Chaudhari, P., LeGoues, F. K., and Segmuller, A., Science 238, 342 (1987).CrossRefGoogle Scholar
14Chang, C-A., Tsuei, C. C., Chi, C. C., and McGuire, T. R., Appl. Phys. Lett. 52, 72 (1988).CrossRefGoogle Scholar
15Chen, C. H., Kwo, J., and Hong, M., Appl. Phys. Lett. 52, 841 (1988).CrossRefGoogle Scholar
16Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
17Luborsky, F. E., Kwasnick, R.F., Borst, K., Garbauskas, M. F., Hall, E. L., and Curran, M. J., J. Appl. Phys. (in press).Google Scholar
18Bean, C.P., Rev. Modern Phys. 36, 31 (1964).CrossRefGoogle Scholar
19Meyer, O., Weschenfelder, F., Geerk, J., Li, H.C., and Xiong, G. C., Phys. Rev. B 37, 9757 (1988).CrossRefGoogle Scholar
20Kumakura, H., Uehara, M., Yoshida, Y., and Togano, K., Phys. Lett. A124, 367 (1987).CrossRefGoogle Scholar
21vanDover, R.B., Schneemeyer, L. F., Gyorgy, E. M., and Waszczak, J. V., Appl. Phys. Lett. 52, 1910 (1988).CrossRefGoogle Scholar
22Senoussi, S., Oussena, M., Collin, G., and Campbell, I. A., Phys. Rev. B 37, 9792 (1988).CrossRefGoogle Scholar
23Kumakura, H., Uehara, M., and Togano, K., Appl. Phys. Lett. 51, 1557 (1987).CrossRefGoogle Scholar
24Kumakura, H., Togano, K., Fukutomi, M., Uehara, M., and Tachikawa, K., Jpn. J. Appl. Phys. 26, L655 (1987).CrossRefGoogle Scholar
25Senoussi, S., Oussena, M., and Hadjoudj, S. (in press).Google Scholar