Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T04:34:19.987Z Has data issue: false hasContentIssue false

Microstructure and optical properties of AlOx thin films grown on ZnO-deposited glass

Published online by Cambridge University Press:  31 January 2011

Su-Shia Lin
Affiliation:
Department of Material Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Jow-Lay Huang
Affiliation:
Department of Material Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Get access

Abstract

AlOx thin films were grown on ZnO-deposited glass substrates under different conditions using magnetron sputtering. The influence of processing parameters (mainly direct-current power and oxidizing atmosphere) on the structure and optical properties were investigated. The AlOx films for all samples in this study showed the coexistence of amorphous and polycrystalline structures. The kinetics of crystal growth could influence the dominant crystal orientation. Fast-growing planes were not the most thermodynamically stable, but were kinetically controlled under the film growth condition. Oxidizing the sample in O2 atmosphere made the AlOx film grow in random directions. The excess oxygen was chemisorbed at the interface between AlOx and ZnO. Therefore, the neighboring oxygen–oxygen distance of AlOx and that of ZnO on their closest-packed planes seriously mismatched. At high power, the particles arrived at the substrate with high kinetic energy and high rate, which led to low density due to porous structure. The transmission decreased with an increase of the pores and surface roughness of AlOxfilm on ZnO-deposited glass. However, the diffusion of oxygen into the grains improved transmission when the sample was oxidized in O2 atmosphere.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dörre, E. and Hübner, H., Alumina: Processing, Properties and Applications (Springer-Verlag, Berlin, 1984), p. 9.CrossRefGoogle Scholar
Edlou, S.M., Smajkiewicz, A., and G.A Al-Jumaily, Appl. Optics 32, 5601 (1993).CrossRefGoogle Scholar
Koski, K., Hölsä, J., and Juliet, Pierre, Thin Solid Films 339, 240 (1999).CrossRefGoogle Scholar
Fietzke, F., Goedicke, K., and Hempel, W., Surf. Coat. Technol. 86–87, 657 (1996).CrossRefGoogle Scholar
Schneider, J.M., Sproul, W.D., Chia, R.W.J., Wong, M-S., and Matthews, A., Surf. Coat. Technol. 96, 262 (1997).CrossRefGoogle Scholar
Gornachev, B., Orlinov, V., and Popova, V., Thin Solid Films 33, 173 (1976).CrossRefGoogle Scholar
Schiller, S., Goedicke, K., Reschke, J., Kirchhoff, V., Schneider, S., and Milde, F., Surf. Coat. Technol. 61, 331 (1993).CrossRefGoogle Scholar
Clarke, P.J., J. Vac. Sci. Technol. A 12, 594 (1994).CrossRefGoogle Scholar
Cueff, R., Baud, B., Besse, J.P., and Jaquette, M., Thin Solid Films 266, 198 (1995).CrossRefGoogle Scholar
Lin, S.S. and Huang, J.L., J. Mater. Res. 18, 965 (2003).CrossRefGoogle Scholar
Powder Diffraction File No. 88–0107 (International Center for Diffraction Date, Newton Square, PA, 1999).Google Scholar
Thompson, C.V., in Evolution of Surface and Thin-Film Microstructure, edited by Atwater, H.A., Chason, E.H., Grabow, M.K., and Lagally, M.G. (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1992), p. 307.Google Scholar
Thompson, C.V., in Grain Growth in Polycrystalline Thin Films (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994).Google Scholar
Prasad, S.V., Walck, S.D., and Zabinski, J.S., Thin Solid Films 360, 107 (2000).CrossRefGoogle Scholar
A. van der Drift, Philips Res. Rep. 22, 267 (1967).Google Scholar
Knuyt, G., Quaeyhaegens, C., D’Haen, J., and Stals, L.M., Thin Solid Films 258, 159 (1995).CrossRefGoogle Scholar
Knuyt, G., Quaeyhaegens, C., D’Haen, J., and Stals, L.M., Phys. Status Solidi B 195, 179 (1996).CrossRefGoogle Scholar
Barna, P.B. and Adamik, M., Thin Solid Films 317, 27 (1998).CrossRefGoogle Scholar
Zhang, D.H., J. Phys. D, Appl. Phys. 28, 1273 (1995).CrossRefGoogle Scholar
Sproul, W.D., Graham, M.E., Wong, M.S., Lopez, S., Li, D., J. Vac. Sci. Technol. A 13, 1188 (1995).CrossRefGoogle Scholar
Bender, M., Seelig, W., Daube, C., Frankenberger, H., Ocker, B., and Stollenwerk, J., Thin Solid Films 326, 72 (1998).CrossRefGoogle Scholar
Yoon, K.H., Choi, J.W., and Lee, D.H., Thin Solid Films 302, 116 (1997).CrossRefGoogle Scholar
Sagalowicz, L. and Fox, G.R., J. Mater. Res. 14, 1876 (1999).CrossRefGoogle Scholar
Sun, X.W., Wang, L.D., and Kwok, H.S., Thin Solid Films 360, 75 (2000).CrossRefGoogle Scholar
Sanon, G., Rup, R., and Mansingh, A., Thin Solid Films 190, 287 (1990).CrossRefGoogle Scholar
Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E., Handbook of X-ray Photoelectron Spectroscopy, (Perkin-Elmer Corporation, Eden Prarie, MN, 1979), pp. 5051.Google Scholar
Natsume, Y. and Sakata, H., Thin Solid Films 372, 30 (2000).CrossRefGoogle Scholar
Islam, M.N., Ghosh, T.B., Chopra, K.L., and Acharya, H.N., Thin Solid Films 280, 20 (1996).CrossRefGoogle Scholar
Paraguay, D.F., Estrada, L.W., Acosta, N.D.R., Andrade, E., and Miki-Yoshida, M., Thin Solis Films 350, 192 (1999).CrossRefGoogle Scholar
Wang, D., Geyer, U., Schneider, S., and Minnigerode, G.V., Thin Solid Films 292, 184 (1997).CrossRefGoogle Scholar
Meng, L.J. and Santos, M.P. dos, Thin Solid Films 322, 56 (1998).CrossRefGoogle Scholar
Yu, J., Zhao, X., and Zhao, Q., Thin Solid Films 379, 2 (2000).CrossRefGoogle Scholar
Studenikin, S.A., Golego, N., and Cocivera, M., J. Appl. Phys. 87, 2413 (2000).CrossRefGoogle Scholar
Ghosh, S., Sarkar, A., Bhattacharya, S., Chaudhuri, S., and Pal, A.K., J. Cryst. Growth 108, 534 (1991).CrossRefGoogle Scholar
Morgan, D.V., Aliyu, Y.H., Bunce, R.W., and Salehi, A., Thin Solid Films 312, 268 (1998).CrossRefGoogle Scholar