Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T13:01:19.707Z Has data issue: false hasContentIssue false

Microstructure and Mechanical Properties of SiC/zirconia-toughened Mullite Nanocomposites Prepared from Mixtures of Mullite Gel, 2Y-TZP, and SiC Nanopowders

Published online by Cambridge University Press:  31 January 2011

X. H. Jin
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, 1295 Dingxi road, Shanghai 200050, People's Republic of China
L. Gao*
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, 1295 Dingxi road, Shanghai 200050, People's Republic of China
L. H. Gui
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, 1295 Dingxi road, Shanghai 200050, People's Republic of China
J. K. Guo
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, 1295 Dingxi road, Shanghai 200050, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Extract

SiC/ZTM (zirconia-toughened mullite) nanocomposites were prepared by hot pressing mixtures of mullite gel, 2Y-TZP, and SiC nanopowders. The intimate mixing of Al2O3 and SiO2 components in the starting powder prevented intermediate ZrSiO4 phase formation during sintering. Addition of nano-sized SiC significantly retarded the matrix grain growth, making the microstructure much finer and more uniform. Transmission electron microscopy and high-resolution transmission electron microscopy revealed that many SiC nanoparticles were found in mullite and ZrO2 grains, and low-energy grain boundaries and mullite–liquid interfaces parallel to the {110} planes of rodlike mullite grains were formed. It is deduced that the formation of rodlike mullite grains is the result of the preferential development of these low-energy grain boundaries and mullite–liquid interfaces. The mechanical properties of the SiC/ZTM nanocomposite showed significant improvement over those of ZTM, and further enhancement in the mechanical properties was achieved by combinative strengthening with nano- and micro-sized SiC.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Niihara, K., Nakahira, A., and Sekino, T., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J.C., and Thomas, C.J. (Mater. Res. Soc. Proc. 286, Pittsburgh, PA, 1993), p. 406.Google Scholar
2.Niihara, K., Ceram. Jpn. 27, 293 (1992).Google Scholar
3.Piciacchio, A., Lee, S.H., and Messing, G.L., J. Am. Ceram. Soc. 77, 2157 (1994).CrossRefGoogle Scholar
4.Stearns, L.C. and Harmer, M.P., J. Am. Ceram. Soc. 79, 3013 (1996).CrossRefGoogle Scholar
5.Jeong, Y-K., Nakahira, A., Morgon, P., and Niihara, K., J. Am. Ceram. Soc. 80, 1307 (1997).CrossRefGoogle Scholar
6.Ohji, T., Nakahira, A., Hirano, T., and Niihara, K., J. Am. Ceram. Soc. 77, 3259 (1994).CrossRefGoogle Scholar
7.Levin, I., Kaplan, W.D., and Brandon, D.G., J. Am. Ceram. Soc. 78, 254 (1995).CrossRefGoogle Scholar
8.Thompson, A.M., Chan, H.M., Harmer, M.P., and Cook, R.E., J. Am. Ceram. Soc. 78, 567 (1995).CrossRefGoogle Scholar
9.Ohji, T., Jeong, Y-K., Choa, Y-H., and Niihara, K., J. Am. Ceram. Soc. 81, 1453 (1998).CrossRefGoogle Scholar
10.Zhao, J-H., Stearns, L.C., Harmer, M.P., Chan, H.M., Miller, G.A., and Cook, R.E., J. Am. Ceram. Soc. 76, 503 (1993).CrossRefGoogle Scholar
11.Pezzotti, T., Sergo, V., Ota, K., Sbaizero, O., Muraki, N., Nishida, T., and Sakai, M., J. Am. Ceram. Soc. Jpn. 104, 497 (1996).CrossRefGoogle Scholar
12.Matsuki, R., Ueda, H., Takenouchi, T., Nakahira, A., and Niihara, K., Powder Powder Metall. (Jpn.) 38, 365 (1991).CrossRefGoogle Scholar
13.Niihara, K., Izaki, K., and Nakahira, A., Powder Powder Metall. (Jpn.) 37, 172 (1990).Google Scholar
14.Yasuda, E., Bao, Q-L., and Niihara, K., J. Am. Ceram. Soc. Jpn. 100, 514 (1992).CrossRefGoogle Scholar
15.Aksay, I.A. and Wiederhorn, S.M., J. Am. Ceram. Soc. 74, 2343 (1991).CrossRefGoogle Scholar
16.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
17.Hyatt, M.J. and Bansal, N.P., J. Am. Ceram. Soc. 25, 2815 (1990).Google Scholar
18.Scheppokat, S., Janssen, R., and Claussen, N., J. Am. Ceram. Soc. 82, 319 (1999).CrossRefGoogle Scholar
19.Lin, Y-J., J. Mater. Res. 14, 916 (1999).CrossRefGoogle Scholar
20.Sacks, M.D., Bozkurt, N., and Scheiffele, G.W., J. Am. Ceram. Soc. 74, 2428 (1991).CrossRefGoogle Scholar
21.Bartsch, M., Saruhan, B., Schmucker, M., and Schneider, H., J. Am. Ceram. Soc. 82, 1388 (1999).CrossRefGoogle Scholar
22.Kleebe, H-J., Hilz, G., and Ziegler, G., J. Am. Ceram. Soc. 79, 2592 (1996).CrossRefGoogle Scholar
23.Ohji, T., Hirano, T., Nakahira, A., and Niihara, K., J. Am. Ceram. Soc. 79, 33 (1996).CrossRefGoogle Scholar
24.Hong, S-H. and Messing, G.L., J. Am. Ceram. Soc. 81, 1269 (1998).CrossRefGoogle Scholar
25.Hong, S-H. and Messing, G.L., J. Am. Ceram. Soc. 82, 867 (1999).CrossRefGoogle Scholar
26.Deng, Z-Y., Zhang, Y-F., Shi, J-L., and Guo, J-K., J. Eur. Ceram. Soc. 16, 1337 (1996).CrossRefGoogle Scholar
27.Deng, Z-Y., Shi, J-L., Zhang, Y-F., Lai, T-R., and Guo, J-K., J. Am. Ceram. Soc. 82, 944 (1999).CrossRefGoogle Scholar
28.Becher, P.F. and Tiegs, T.N., J. Am. Ceram. Soc. 70, 651 (1987).CrossRefGoogle Scholar
29.Hong, J-S., Huang, X-X., and Guo, J-K., J. Mater. Sci. 31, 4847 (1996).CrossRefGoogle Scholar