Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T15:26:22.679Z Has data issue: false hasContentIssue false

Microstructure and mechanical properties of NiAl/Al2O3 composites

Published online by Cambridge University Press:  26 July 2012

Chii-Shyang Hwang
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan, Republic of China
Tien-Jui Liu
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan, Republic of China
Get access

Extract

To improve mechanical properties of NiAl, a method for making NiAl matrix composites containing oxide ceramics is introduced. The method involves oxidation of NiAl powder in air to form a thin and uniform oxide scale, mainly Al2O3, on the NiAl particles. The Al2O3 contents increase with increasing oxidation temperature. The NiAl/Al2O3 composites are then formed by hot-pressing the oxidized NiAl powder under vacuum atmosphere. Al2O3 inhibits the grain growth of NiAl during the hot-pressing. The residual stress and the Ni-rich NiAl composition exist in the hot-pressed NiAl/Al2O3 composites. Strength and toughness data on NiAl/Al2O3 composites indicate that the use of oxidation of NiAl powder is a viable technique for improving these properties over that of monolithic NiAl.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Noebe, R. D., Bowman, R. R., and Nathal, M. V., Int. Mater. Rev. 38, 193 (1993).CrossRefGoogle Scholar
2.Darolia, Ram, JOM 43 (3), 44 (1991).CrossRefGoogle Scholar
3.Destefani, J. D., Adv. Mater. Proc. 2, 37 (1989).Google Scholar
4.Osamu, Izumi, Metal (in Japanese) 8, 52 (1993).Google Scholar
5.Jha, S.C., Ray, R., and Gaydosh, D. J., Scripta Metall. 23, 805 (1989).CrossRefGoogle Scholar
6.Rigney, J. D., Khadkikar, P. S., Lewandowski, J. J., and Vedula, K., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C.T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 603.Google Scholar
7.Whittenberger, J. D., Ray, R., and Jha, S. C., Mater. Sci. Eng. A151, 137146 (1992).CrossRefGoogle Scholar
8.Barinov, M. and Evdokimov, V. Y., Acta Metall. Mater. 41, 801 (1993).CrossRefGoogle Scholar
9.Barinov, S.M., Evdokimov, V.Y., Ponomarev, V.F., and Shevchenko, V.Y., J. Mater. Sci. Lett. 13, 183 (1994).CrossRefGoogle Scholar
10.Bowman, Randy R., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), pp. 145155.Google Scholar
11.Wang, L., Beck, N., and Arsenault, R. J., Mater. Sci. Eng. A177, 83 (1994).CrossRefGoogle Scholar
12.Nourbakhsh, S., Liang, F. L., and Margolin, H., Adv. Mater. Manu. Proc., 57 (1988).Google Scholar
13.Nourbakhsh, S., Sahin, O., Rhee, W.H., and Nargolin, H., Metall. Trans. 22A, 3059 (1991).CrossRefGoogle Scholar
14.Kumar, K.S., Mannan, S.K., and Viswanadham, R.K., Acta Metall. Mater. 40, 1201 (1992).CrossRefGoogle Scholar
15.Doychak, J., Smialek, J.L., and Mitchell, T. E., Metall. Trans. 20A, 499 (1989).CrossRefGoogle Scholar
16.Brumm, M.W. and Grabke, H.J., Corro. Sci. 33 (1), 16771690 (1992).CrossRefGoogle Scholar