Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T16:54:19.924Z Has data issue: false hasContentIssue false

Microstructure and magnetic behavior of FeCoNi(Mn–Si)x (x = 0.5, 0.75, 1.0) high-entropy alloys

Published online by Cambridge University Press:  14 March 2019

Priyanka Sahu
Affiliation:
Department of Metallurgy and Materials Engineering, Indian Institute of Technology Indore, Indore - 453552, India
Suresh Solanki
Affiliation:
Department of Mechanical Engineering, Global Institute of Technology, Jaipur, 302022,India Metallurgical and Materials Engineering, MNIT Jaipur -302017, India
Sheetal Dewangan
Affiliation:
Department of Metallurgy and Materials Engineering, Indian Institute of Technology Indore, Indore - 453552, India
Vinod Kumar*
Affiliation:
Department of Metallurgy and Materials Engineering, Indian Institute of Technology Indore, Indore - 453552, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

FeCoNi(Mn–Si)x (x = 0.5, 0.75, 1.0) high-entropy alloys (HEAs) were successfully synthesized by mechanical alloying (MA), and the effect of Mn and Si in the ferromagnetic alloys on crystal structure and magnetic behavior was thoroughly investigated. XRD, SEM, and TEM were used to investigate the effect of Mn and Si content on the structure of HEAs. The high Mn and Si contents change the structure from the BCC phase to FCC phase. The evolution of surface morphology was discussed on the basis of MA time and content of Mn and Si. The magnetic hysteresis curve confirmed the highest magnetic saturation (Ms) value of 134.21 emu/g for FeCoNi(Mn–Si)1.0 alloy and an appreciably low coercivity (Hc) of 98.07 Oe for FeCoNi(Mn–Si)0.5 alloy. The finite element method (FEM), using COMSOL Multiphysics software, has been used for determining the magnetic flux density (B) on the surface and at the center of the transformer core to determine the performance of the proposed HEAs.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maulik, O. and Kumar, V.: Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater. Charact. 110, 116125 (2015).CrossRefGoogle Scholar
Kumar, D., Maulik, O., Kumar, S., Prasad, Y.V.S.S., and Kumar, V.: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 7177 (2018).CrossRefGoogle Scholar
Kumar, S., Kumar, D., Maulik, O., Pradhan, A.K., Kumar, V., and Patniak, A.: Synthesis and air jet erosion study of AlxFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys. Metall. Mater. Trans. A 49, 56075618 (2018).CrossRefGoogle Scholar
Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-entropy Alloys (Butterworth-Heinemann, UK, 2014).Google Scholar
Kumar, J., Kumar, N., Das, S., Gurao, N.P., and Biswas, K.: Effect of Al addition on the microstructural evolution of equiatomic CoCrFeMnNi alloy. Trans. Indian Inst. Met. 71, 27492758 (2018).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., and Chang, S.Y.: Nanostructured high entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213218 (2004).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 193 (2014).CrossRefGoogle Scholar
Widom, M., Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-entropy Alloys: Fundamentals and Applications (Springer, Switzerland, 2016).Google Scholar
Gao, M.C., Zhang, B., Guo, S.M., Qiao, J.W., and Hawk, J.A.: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47, 33223332 (2016).CrossRefGoogle Scholar
Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 57235734 (2012).CrossRefGoogle Scholar
Wang, W.R., Wang, W.L., and Yeh, J.W.: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143152 (2014).CrossRefGoogle Scholar
Chuang, M.H., Tsai, M.H., Wang, W.R., Lin, S.J., and Yeh, J.W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 63086317 (2011).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214228 (2014).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 11531158 (2014).CrossRefGoogle ScholarPubMed
Zhang, Z., Mao, M.M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., Yu, Q., and Ritchie, R.O.: Nano scale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 57435755 (2013).CrossRefGoogle Scholar
Jien-Wei, Y.: Recent progress in high entropy alloys. Ann. Chimie Sci. Matériaux 31, 633648 (2006).Google Scholar
Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).CrossRefGoogle Scholar
Osaka, T., Takai, M., Hayashi, K., Ohashi, K., Saito, M., and Yamada, K.: A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392, 796 (1998).CrossRefGoogle Scholar
Yeh, J.W., Chen, Y.L., Lin, S.J., and Chen, S.K.: High-entropy alloys—A new era of exploitation. In Materials Science Forum, Vol. 560 (Trans Tech Publications, Switzerland, 2007); pp. 19.Google Scholar
Cheng, X.M., Zhang, X.K., Zhang, D.Z., Lee, S.H., Duckham, A., Weihs, T.P., Cammarata, R.C., Xiao, J.Q., and Chien, C.L.: Magnetic core loss of ultrahigh strength FeCo alloys. J. Appl. Phys. 93, 71217123 (2003).CrossRefGoogle Scholar
Duckham, A., Zhang, D.Z., Liang, D., Luzin, V., Cammarata, R.C., Leheny, R.L., Chien, C.L., and Weihs, T.P.: Temperature dependent mechanical properties of ultra-fine grained FeCo–2V. Acta Mater. 51, 40834093 (2003).CrossRefGoogle Scholar
Lucas, M.S., Mauger, L., Muñoz, J.A., Xiao, Y., Sheets, A.O., Semiatin, S.L., Horwath, J., and Turgut, Z.: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).CrossRefGoogle Scholar
Zuo, T.T., Li, R.B., Ren, X.J., and Zhang, Y.: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J. Magn. Magn. Mater. 371, 6068 (2014).CrossRefGoogle Scholar
Uporov, S., Bykov, V., Pryanichnikov, S., Shubin, A., and Uporova, N.: Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy. Intermetallics 83, 18 (2017).CrossRefGoogle Scholar
Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).CrossRefGoogle ScholarPubMed
Ma, S.G. and Zhang, Y.: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480486 (2012).CrossRefGoogle Scholar
Yao, C.Z., Zhang, P., Liu, M., Li, G.R., Ye, J.Q., Liu, P., and Tong, Y.X.: Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53, 83598365 (2008).CrossRefGoogle Scholar
Singh, S., Wanderka, N., Kiefer, K., Siemensmeyer, K., and Banhart, J.: Effect of decomposition of the Cr–Fe–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 111, 619622 (2011).CrossRefGoogle ScholarPubMed
Tariq, N.H., Naeem, M., Hasan, B.A., Akhter, J.I., and Siddique, M.: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 7985 (2013).CrossRefGoogle Scholar
Wang, J., Zheng, Z., Xu, J., and Wang, Y.: Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys. J. Magn. Magn. Mater. 355, 5864 (2014).CrossRefGoogle Scholar
Huang, S., Li, W., Li, X., Schönecker, S., Bergqvist, L., Holmström, E., and Vitos, L.: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. Des. 103, 7174 (2016).CrossRefGoogle Scholar
Prasad, N.K. and Kumar, V.: Structure–magnetic properties correlation in mechanically alloyed nanocrystalline FeCoNi(Mg–Si)x alloy powders. J. Mater. Sci.: Mater. Electron. 27, 1013610146 (2016).Google Scholar
Kumar, V., Shekhar, R., Balasubramaniam, R., and Balani, K.: Microstructure evolution and texture development in thermomechanically processed Mg–Li–Al based alloys. Mater. Sci. Eng., A 547, 3850 (2012).CrossRefGoogle Scholar
Yousefi, M., Sharafi, S., and Mehrolhosseiny, A.: Correlation between structural parameters and magnetic properties of ball milled nano-crystalline Fe–Co–Si powders. Adv. Powder Technol. 25, 752760 (2014).CrossRefGoogle Scholar
Silva, V.C., Meunier, G., and Foggia, A.: A 3-D finite-element computation of eddy currents and losses in laminated iron cores allowing for electric and magnetic anisotropy. IEEE Trans. Magn. 31, 21392141 (1995).CrossRefGoogle Scholar
Williamson, G.K. and Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 2231 (1953).CrossRefGoogle Scholar
Cullity, B.D.: Elements of X-Ray Diffraction, 2nd ed. (Addision-Wesley, Massachusetts, 1978); p. 356.Google Scholar
Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1184 (2001).CrossRefGoogle Scholar
Bahrami, A.H. and Sharafi, S.: Evolution of microstructural and magnetic properties of mechanically alloyed Fe–Si powders. Powder Technol. 256, 6774 (2012).Google Scholar
Baghbaderani, H.A., Sharafi, S., and Chermahini, M.D.: Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying. Powder Technol. 230, 241246 (2012).CrossRefGoogle Scholar
Nasibi, S., Shokrollahi, H., Karimi, L., and Janghorban, K.: Investigation of structural, microstructural and magnetic properties of mechanically alloyed amorphous/nanocrystalline Fe32.5Co32.5Nb35 powders. Powder Technol. 228, 404409 (2012).CrossRefGoogle Scholar
Yousefi, M. and Sharafi, S.: The effect of simultaneous addition of Si and Co on microstructure and magnetic properties of nanostructured iron prepared by mechanical alloying. Mater. Des. 37, 325333 (2012).CrossRefGoogle Scholar
Khajepour, M. and Sharafi, S.: Structural and magnetic properties of nanostructured Fe50(Co50)–6.5 wt% Si powder prepared by high energy ball milling. J. Alloys Compd. 509, 77297737 (2011).CrossRefGoogle Scholar
Chitsazan, B., Shokrollahi, H., Behvandi, A., and Ghaffari, M.: Magnetic, structural and micro-structural properties of mechanically alloyed nano-structured Fe48Co48V4 powder containing inter-metallic Co3V. J. Magn. Magn. Mater. 323, 11281133 (2011).CrossRefGoogle Scholar
Prasad, N.K. and Kumar, V.: Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying. J. Mater. Sci.: Mater. Electron. 26, 1010910118 (2015).Google Scholar
Bahrami, A.H., Sharafi, S., and Baghbaderani, H.A.: The effect of Si addition on the microstructure and magnetic properties of Permalloy prepared by mechanical alloying method. Adv. Powder Technol. 24, 235241 (2013).CrossRefGoogle Scholar
Razi, M., Ghasemi, A., and Borhani, G.H.: Microstructural and magnetic properties of nanostructured Fe65Co35 powders prepared by mechanical alloying. In Advanced Materials Research, Vol. 829 (Trans Tech Publications, Switzerland, 2014); pp. 778783.Google Scholar
Bitoh, T., Makino, A., Inoue, A., and Masumoto, T.: Random anisotropy model for nanocrystalline soft magnetic alloys with grain-size distribution. Mater. Trans. 44, 20112019 (2003).CrossRefGoogle Scholar
Neubert, H., Bödrich, T., and Disselnkötter, R.: Transient electromagnetic-thermal fe-model of a spice-coupled transformer including eddy currents with comsolmultiphysics 4.2. In 2011 COMSOL Conference (Stuttgart, 2011); pp. 17.Google Scholar
Bödrich, T., Neubert, H., and Disselnkötter, R.: Transient finite element analysis of a SPICE-coupled transformer with COMSOL Multiphysics. In 4th European COMSOL Conference, Vol. 17 (Paris, France, 2010). (No. 19.11).Google Scholar
Supplementary material: File

Sahu et al. supplementary material

Figures A1-A4

Download Sahu et al. supplementary material(File)
File 332.6 KB