Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T20:14:00.947Z Has data issue: false hasContentIssue false

Micro-Raman Spectroscopic Characterization of Nanosized TiO2 Powders Prepared by Vapor Hydrolysis

Published online by Cambridge University Press:  31 January 2011

Yun-Hong Zhang
Affiliation:
Department of Chemical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
Chak K. Chan*
Affiliation:
Department of Chemical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
John F. Porter
Affiliation:
Department of Chemical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
Wei Guo
Affiliation:
Department of Chemical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
*
b)Address correspondence to this author.
Get access

Abstract

Micro-Raman analysis was used to study the structure of TiO2 powders produced at low (260 °C) and high (600–900 °C) temperatures by vapor hydrolysis of titanium tetraisopropoxide (TTIP). Spatial inhomogeneity was discovered after the amorphous TiO2 powders produced at low temperature were calcined at 700, 800, and 900 °C for 3 h. The TiO2 powders produced at high temperatures (from 600 to 900 °C) were found to be spatially homogeneous and predominately anatase in structure. Small amounts of rutile and brookite are found for powders produced at 700, 800, and 900 °C after calcination at 600 °C for 3 h. The rutile and brookite impurities are believed to be concentrated on the surface of anatase based on a comparison of results of Raman and x-ray diffraction studies.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Linsebigler, A. L., Lu, G. Q., and Yates, J. T., Jr., Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
2.Berry, R. J. and Mueller, M. R., Microchem. J. 50, 28 (1994).CrossRefGoogle Scholar
3.Bickley, R. I., Gonzalez-Carreno, T., Lees, J. S., Palmisano, L., and Tilley, R. J. D., J. Solid State Chem. 92, 178 (1991).CrossRefGoogle Scholar
4.Maruska, H. P. and Ghosh, A. K., Solar Energy 20, 443 (1978).CrossRefGoogle Scholar
5.Kamat, P. V., Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1997), Vol. 103, p. 237.Google Scholar
6.Lottici, P. P., Bersani, D., and Montenero, A., J. Mater. Sci. 28, 177 (1993).CrossRefGoogle Scholar
7.Haro-Poniatowski, E., Rodriguez-Talavera, R., de la Cruz Heredia, M., Cano-Corona, O., and Arroyo-Murillo, R., J. Mater. Res. 9, 2102 (1994).CrossRefGoogle Scholar
8.Parker, J. C. and Siegel, R. W., J. Mater. Res. 5, 1246 (1990).CrossRefGoogle Scholar
9.Busca, G., Ramis, G., Amores, J. M. G., Escribano, V. S., and Piaggio, P., J. Chem. Soc. Faraday Trans. 90, 3181 (1994).CrossRefGoogle Scholar
10.Okuyama, K., Kousaka, Y., Tohge, N., Yamamoto, S., Wu, J. J., Flagan, R. C., and Seinfeld, J. H., AIChE. J. 32, 2010 (1986).CrossRefGoogle Scholar
11.Spurr, R. A. and Myers, H., Anal. Chem. 29, 760 (1957).CrossRefGoogle Scholar
12.West, A. R., Solid State Chemistry and its Applications (Wiley, New York, 1984), p. 174.Google Scholar
13.Chaves, A., Katiyan, K. S., and Porto, S. P. S., Phys. Rev. 10, 3522 (1974).CrossRefGoogle Scholar
14.Ohsaka, T., Izumi, F., and Fujiki, Y., J. Raman Spectrosc. 7, 321 (1978).CrossRefGoogle Scholar
15.Tompsett, G. A., Bowmaker, G. A., Cooney, B. P., Metson, J. B., Rodgers, K. A., and Seakins, J. M., J. Raman Spectrosc. 26, 57 (1995).CrossRefGoogle Scholar
16.Balachadran, U. and Eror, N. G., J. Solid State Chem. 42, 276 (1982).CrossRefGoogle Scholar
17.Ohsaka, T., Yamoka, S., and Shimomura, O., Solid State Commun. 30, 345 (1979).CrossRefGoogle Scholar
18.Edelson, L. H. and Glaeser, A. M., J. Am. Ceram. Soc. 71, 225 (1988).CrossRefGoogle Scholar
19.Kelly, S., Pollak, F. H., and Tomkiewicz, M., J. Phys. Chem. B 101, 2730 (1997).CrossRefGoogle Scholar
20.Pawlewicz, W. P., Exarhos, G. J., and Canoway, W. E., Appl. Opt. 22, 1837 (1983).CrossRefGoogle Scholar
21.Capwell, R. J., Spagnolo, F., and De Sessa, M. A., Appl. Spectrosc. 26, 537 (1972).CrossRefGoogle Scholar
22.Ding, X. Z., Liu, X. H., and He, Y. Z., J. Mater. Sci. Lett. 15, 1789 (1996).CrossRefGoogle Scholar
23.Zerda, T. W. and Hoang, G., J. Non-Cryst. Solid 109, 9 (1989).CrossRefGoogle Scholar
24.Beck, D. D. and Siegel, R. W., J. Mater. Res. 7, 2840 (1992).CrossRefGoogle Scholar
25.Lusvardi, V. S., Barteau, M. A., and Farneth, W. E., J. Catal. 153, 41 (1995).CrossRefGoogle Scholar
26.Busca, G., Saussey, H., Saur, O., Lavalley, J. C., and Lorenzelli, V., Appl. Catal. 14, 245 (1985).CrossRefGoogle Scholar
27.Ramis, G., Busca, G., and Lorenzelli, V., J. Chem. Soc., Faraday Trans. 1 83, 1591 (1987).CrossRefGoogle Scholar
28.Gotic, M., Ivanda, M., Sekulic, A., Music, S., Popovic, S., Turkovic, A., and Furic, K., Mater. Lett. 28, 225 (1996).CrossRefGoogle Scholar
29.Cheng, H., Ma, J., Zhao, Z., and Qi, L., Chem. Mater. 7 (4), 663 (1995).CrossRefGoogle Scholar