Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T14:42:26.819Z Has data issue: false hasContentIssue false

Micro-Raman analysis of residual stresses and phase transformations in crystalline silicon under microindentation

Published online by Cambridge University Press:  31 January 2011

G. Lucazeau
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide de Grenoble, ENSEEG-B.P. 75, 38402 Saint Martin d'Hères Cedex, France
L. Abello
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide de Grenoble, ENSEEG-B.P. 75, 38402 Saint Martin d'Hères Cedex, France
Get access

Abstract

Vickers microindentations obtained with loads between 0.05 N and 2 N were performed on crystalline (100) silicon. The residual stress field and the different structural states induced by loading were studied by mapping the indented zones by their micro-Raman response. A Raman signature of amorphous silicon is found in the center of the impression. The energy of the Γ25 zone center phonon is found to vary from 522 cm−1 when probing the silicon at a distance of 80 μm from the center of the indentation up to 527 cm−1 when probing the pileup region of the impression. When probing cracked zones in the vicinity of the pileup region, wave numbers as high as 536 cm−1 are measured. The stress components induced by a point indentation (1 N) have been calculated from analytical expressions given in the literature. For an average conversion factor of 3.2 cm−1/GPa, the residual local stresses after unloading are found of the same order of magnitude or even larger than the calculated stresses that are generated during loading. A tentative explanation is proposed. Finally a systematic laser-induced thermal treatment of the central area and of the pileup region of indentations was performed. It is shown that the amorphous silicon in the center can partly recrystallize but that the residual stress state in the pileup region cannot be completely relaxed by local laser heating.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ventorf, R. H. and Kasper, J. S., Science 139, 338 (1963).CrossRefGoogle Scholar
2.Olijnik, H., Sikka, J. K., and Halzapjek, W. B., Phys. Lett. 103A, 137 (1984).CrossRefGoogle Scholar
3.Besson, J. M., Malkri, F. H., Gonzalez, J., and Weill, G., Phys. Rev. Lett. 59, 473 (1987).CrossRefGoogle Scholar
4.Eremenko, V. G. and Nikitenko, V. I., Phys. Status Solidi (a) 14, 317 (1972).CrossRefGoogle Scholar
5.Pirouz, P., in Structure and properties of dislocations in semiconductors, edited by Roberts, S. G., Holt, D. B., and Wilshaw, P. R. (Oxford, 1989).Google Scholar
6.Gridnova, I. V., Milman, Y. V., and Trefilev, V. I., Phys. Status Solidi (a) 14, 177 (1972).CrossRefGoogle Scholar
7.Shimomura, O., Minomura, S., Sakai, N., Asaumi, K., Tamura, K., Fukushima, J., and Endo, H., Philos. Mag. 29, 547 (1974).CrossRefGoogle Scholar
8.Gerk, A. P. and Tabor, D., Nature 271, 732 (1978).CrossRefGoogle Scholar
9.Gupta, M. C. and Ruoff, A. L., J. Appl. Phys. 51, 1072 (1980).CrossRefGoogle Scholar
10.Pharr, G. M., Oliver, W. C., Cook, R. F., Kirchner, P. D., Kroll, M. C., Dinger, T. R., and Clarke, D. R., J. Mater. Res. 7, 961 (1992).CrossRefGoogle Scholar
11.Pharr, G. M., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 301.Google Scholar
12.Pharr, G. M., Oliver, W. C., and Clarke, D. R., Scripta Metall. 23, 1949 (1989).CrossRefGoogle Scholar
13.Hu, J. Z. and Spain, I. L., Solid State Commun. 51, 263 (1984).CrossRefGoogle Scholar
14.Hu, J. Z., Markl, L. D., Menoni, C. S., and Spain, I. L., Phys. Rev. B 34, 4679 (1986).CrossRefGoogle Scholar
15.Weppelmann, E. W., Field, J. S., and Swain, M. V., J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
16.Clarke, D. R., Kroll, M. C., Kirchner, P. D., Cook, R. F., and Hockey, B. J., Phys. Rev. Lett. 60, 2156 (1988).CrossRefGoogle Scholar
17.Anastassakis, E. and Liarokapis, E., J. Appl. Phys. 62, 3346 (1987).CrossRefGoogle Scholar
18.Anastassakis, E., Pinczuk, A., Burstein, E., Pollak, F. H., and Cardona, M., Solid State Commun. 8, 133 (1970).CrossRefGoogle Scholar
19.Hart, T. R., Aggarwal, R. L., and Lax, B., Phys. Rev. B 1, 638 (1970).CrossRefGoogle Scholar
20.Raptis, Y. S., Liarokapis, E., and Anastassakis, E., Appl. Phys. Lett. 44, 125 (1984).CrossRefGoogle Scholar
21.Liarokapis, E. and Raptis, Y. S., J. Appl. Phys. 57, 5123 (1985).CrossRefGoogle Scholar
22.Liarokapis, E. and Anastassakis, E., J. Appl. Phys. 63, 2615 (1988).CrossRefGoogle Scholar
23.Welth, L. P., Tuchman, J. A., and Herman, I. P., J. Appl. Phys. 64, 6274 (1988).Google Scholar
24.Jellison, G. E., Jr. and Modine, F. A., Appl. Phys. Lett. 41, 180 (1982).CrossRefGoogle Scholar
25.Jimenez, J., Martin, E., Torres, A., Martin, B., Rull, F., and Sobron, F., J. Mater. Sci. 4, 271 (1993).Google Scholar
26.Lucazeau, G. and Abello, L., Analusis 23, 301 (1995).Google Scholar
27.Huang, C. R., Lee, M. C., Chang, Y. S., Lin, C. C., and Chao, Y. F., J. Phys. D. Appl. Phys. 23, 729 (1980).CrossRefGoogle Scholar
28.Bustarret, E., Hachicha, M. A., and Brunel, M., Appl. Phys. Lett. 52, 1675 (1988).CrossRefGoogle Scholar
29.Lawn, B. R. and Swain, M. V., J. Mater. Sci. 10, 113 (1975).CrossRefGoogle Scholar
30.Cook, R. F. and Pharr, G. M., J. Am. Ceram. Soc. 73, 787 (1990).CrossRefGoogle Scholar