Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T00:49:02.929Z Has data issue: false hasContentIssue false

Micropyretic synthesis of NiAl containing Ti and B

Published online by Cambridge University Press:  31 January 2011

G. K. Dey
Affiliation:
Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
A. Arya
Affiliation:
Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
J. A. Sekhar
Affiliation:
International Center for Micropyretics, University of Cincinnati, P.O. Box 210012, Cincinnati, Ohio 45221
Get access

Extract

The effect of alloying additions of Ti and B on the process of micropyretic synthesis on NiAl and on the microstructure of the synthesized alloy was examined. It was observed that the combustibility of the quaternary alloy is good despite the presence of the alloying elements because of an additional combustion reaction between Ti and B. The microstructure of the quaternary alloy was found to consist primarily of the NiAl and Ti boride phases. The effect of preheating of the specimen prior to synthesis on the process of synthesis was also examined. It was observed that preheating not only can change the morphology of the phases but also influence the nature of the phases present in the alloy. The mechanism of the formation of the two phase microstructure during the synthesis from the elemental powders was established by stopping the combustion front and by carrying out a detailed microstructural characterization of regions around the stopped combustion front.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Noebe, R.D., Bowman, R.R., and Nathal, M.V., Int. Mater. Rev. 38, 193 (1993).CrossRefGoogle Scholar
2.Levit, V.I., Bul, I.A., Hu, J., and Kaufmann, M.J., Scr. Mater. 34, 1925 (1996).CrossRefGoogle Scholar
3.Kayseer, W.A., Laag, R., Murray, J.C., and Petzow, G.E., Int. J. Powder Met. 27, 43 (1991).Google Scholar
4.Darolia, R., J. Met. 3, 44 (1991).Google Scholar
5.Liu, C.T. and White, C.L., Scr. Mater. 20, 1613 (1986).Google Scholar
6.George, E.P. and Liu, C.T., J. Mater. Res. 5, 754 (1990).CrossRefGoogle Scholar
7.Cheng, T. and Flower, H.M., Acta Met. Mater. 42, 1399 (1994).CrossRefGoogle Scholar
8.Whittenberger, D.J., Viswanadham, R.K., Mannan, S.K., and Kumar, K.S., J. Mater. Res. 4, 1164 (1989).CrossRefGoogle Scholar
9.Li, H.P. and Sekhar, J.A., J. Mater. Sci. 30, 4628 (1995).CrossRefGoogle Scholar
10.Subramanyan, J. and Vijayakumar, M., J. Mater. Sci. 27, 6249 (1992).CrossRefGoogle Scholar
11.Philopt, K.A., Munir, Z.A., and Holt, J.B., J. Mater. Sci. 22, 159 (1987).CrossRefGoogle Scholar
12.Martirosyan, N.A., Dolukhanyanand, S.K., and Mershanov, A.G., Combust. Explos. Shock Waves (Engl. Transl.) 19, 569 (1985).CrossRefGoogle Scholar
13.Boldyrev, V.V., Alekshandrov, V.V., Korchagin, M.A., Tolochko, B.P., Guesenko, S.N., Sokolov, A.S., Shermonov, M.A., and Lyakhov, N.Z., Dokl. Akad. Nauk. USSR 259, 1127 (1981).Google Scholar
14.Dey, G.K. and Sekhar, J.A., Met. Mater. Trans. 28, 905 (1997).CrossRefGoogle Scholar
15.Aleksandrov, V.V. and Korchagin, M.A., Combust. Explos. Shock Waves (Engl. Transl.) 23, 557 (1987).CrossRefGoogle Scholar
16.Alekshandrov, V.V., Korchagin, M.A., Tolchonko, B.P., Gusenko, S.N., Sokolov, A.S., and Sheromov, M.A., Combust. Explos. Shock Waves (Engl. Transl.) 19, 30 (1984).Google Scholar
17.Dunand, D.C., Sommer, J.L., and Mortensen, A., in Processing and Fabrication of Advanced Materials for High Temperature Applications II, edited by Srivatsan, T.A. and Ravi, R.A. (TMS, Warrendale, PA, 1993), p. 635.Google Scholar
18.Dunand, D.C., Sommer, J.L., and Mortensen, A., Met. Trans. 24A, 2161 (1992).Google Scholar
19.Kubaschewski, O. and Alcock, C.B., in Metallurgical Thermochemistry, International Series on Materials Science and Technology, edited by Raynor, G.V. (Pergamon Press, Oxford, United Kingdom, 1989).Google Scholar
20.Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., and McKelly, K., Selected Values of Thermodynamic Properties of Binary Alloys (ASM, Metals Park, OH, 1973).Google Scholar
21.Kaufman, L. and Bernstein, H., in Computer Calculation of Phase Diagrams, Refractory Materials, A Series of Monographs Vol. 4, edited by Margrave, J.L. (Academic Press, New York, 1970).Google Scholar
22.Li, H.P. and Sekhar, J.A., J. Mater. Res. 8, 2515 (1993).CrossRefGoogle Scholar
23.Li, H.P. and Sekhar, J.A., Mater. Sci. Eng. A160, 221 (1993).CrossRefGoogle Scholar
24.Li, H.P. and Sekhar, J.A., in Proceedings of the First International Conference on Advanced Synthesis of Engineered Materials, San Francisco, CA, edited by Moore, J.J., Lavernia, E.J., and Froes, F.H. (ASM International, Materials Park, OH, 1993), p. 25.Google Scholar
25.Li, H.P. and Sekhar, J.A., J. Mater. Res. 10, 2471 (1995).CrossRefGoogle Scholar
26.Feng, Hj. and Moore, J.J., Prog. Mater. Sci. 39, 275 (1995).Google Scholar
27.Naiborodenko, Y.S. and Itin, V.I., Combust. Explos. Shock Waves (Engl. Transl.) 11, 734 (1995).Google Scholar
28.Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).CrossRefGoogle Scholar
29.Mershanov, A.G. and Borovinskaya, I.P., Dokl. Akad. Nauk. USSR 204, 429 (1972).Google Scholar
30.Zenin, A.A., Mershanov, A.G., and Nersisyan, G.A., Dokl. Phys. Chem. 236, 973 (1980).Google Scholar
31.Boettinger, W.J., Bendersky, L.A., Biancaniello, F.S., and Cahn, J.W., Mater. Sci. Eng. 98, 273 (1988).CrossRefGoogle Scholar
32.Raman, A. and Schubert, K., Z. Metallkde. 56, 99 (1965).Google Scholar
33.Polvani, R.S., Tzeng, W.S., and Strutt, P.R., Met. Trans. 7, 33 (1976).CrossRefGoogle Scholar
34.Neih, T.G., Wadsworth, J., and Liu, C.T., Scr. Mater. 22, 1409 (1988).Google Scholar
35. Powder Diffraction File, Alphabetical Indexes, International Center for Diffraction Data (1994).Google Scholar
36.Lakshmikantha, M.G., Bhattacharya, A., and Sekhar, J.A., Met. Trans. 23A, 2334 (1992).CrossRefGoogle Scholar
37.Hyman, M.E., McCullough, C., Levi, C.G., and Mehrabian, R., Met. Trans. 22A, 1647 (1991).CrossRefGoogle Scholar
38.Verma, A. and Lebrat, J.P., Chem. Eng. Sci. 47, 2179 (1992).CrossRefGoogle Scholar
39.Lebart, J.P., Varma, A., and McGinn, P.J., J. Mater. Res. 9, 1184 (1994).CrossRefGoogle Scholar