Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T03:58:52.309Z Has data issue: false hasContentIssue false

Micron thick epitaxial (100) Ag film growth on MgO

Published online by Cambridge University Press:  31 January 2011

A. C. Carter
Affiliation:
Naval Research Laboratory, Washington, DC 20375
W. Chang
Affiliation:
Naval Research Laboratory, Washington, DC 20375
S. B. Qadri
Affiliation:
Naval Research Laboratory, Washington, DC 20375
J. S. Horwitz
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Robert Leuchtner
Affiliation:
Naval Research Laboratory, Washington, DC 20375
D. B. Chrisey
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Epitaxial films of (100) Ag were deposited onto (100) MgO substrates to a thickness of 4 μm with no evidence of (111) nucleation. Deposited films were smooth and had large areas, 50 × 50 microns square, free of morphological defects. Films were deposited using a two-step process. First, pulsed laser deposition was used to grow a 1000 Å Ag (100) seed layer on the MgO substrate. Second, e−beam evaporation was used to grow the film to the desired thickness. The high quality of the resulting films will allow them to be used as templates for further epitaxial deposition of other applied materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bauer, E. and Poppa, H., Thin Solid Films 12, 167 (1972).CrossRefGoogle Scholar
2.Matthews, J. W., Epitaxial Growth, Part B (Academic, New York, 1975).Google Scholar
3.Rhüle, M., Evans, A., Ashby, M. F., and Hirth, J. P., Metal-Ceramic Interfaces (Pergamon Press, Oxford, 1990).Google Scholar
4.Honjo, G. and Yagi, K., J. Vac. Sci. Technol. 6, 576 (1969).Google Scholar
5.Sato, H. and Shinozaki, S., J. Vac. Sci. Technol. 8, 159 (1971).CrossRefGoogle Scholar
6.Sato, H., Shinozaki, S., and Cicotte, L. J., J. Vac. Sci. Technol. 7, 62 (1969).CrossRefGoogle Scholar
7.Green, A. K., Dancy, J., and Bauer, E., J. Vac. Sci. Technol. 7, 159 (1970).Google Scholar
8.Guénard, P., Renaud, G., and Villette, B., Phys. B. 221, 205 (1996).CrossRefGoogle Scholar
9.Carter, A. C., Horwitz, J. S., Chrisey, D. B., Pond, J. M., Kirchoefer, S. W., and Chang, W., Proceedings of 1997 International Symposium on Integrated Ferroelectrics, 2–5 March 1997, Santa Fe, NM.Google Scholar
10.Grabowski, K. S., Horwitz, J. S., and Chrisey, D. B., Ferroelectr. 116, 19 (1991).Google Scholar
11.Leuchtner, R. E., Chrisey, D. B., Horwitz, J. S., and Grabowski, K. S., Surf. Coat. Technol, 51, 476 (1992).CrossRefGoogle Scholar
12.Cillessen, J. F. M., Wolf, R. M., and DeLeeuw, D. M., Thin Solid Films 226, 53 (1993).CrossRefGoogle Scholar
13.Wolf, S. A., Qadri, S. B., Claassen, J. H., Francavilla, T. L., and Dalrymple, B. J., J. Vac. Sci. Technol. A 4, 524 (1986).CrossRefGoogle Scholar
14.Qadri, S. B., Goldenberg, M., Prinz, G. A., and Ferrari, J. M., J. Vac. Sci. Technol. B 3, 718 (1985).Google Scholar
15.Suzuki, Y., Kikuchi, H., and Koshizuka, N., Jpn. J. Appl. Phys. 27, L1175 (1988).Google Scholar
16.Elliott, W. C., Miceli, P. F., Tse, T., and Stephens, P. W., Phys. Rev. B 54, 17 933 (1996).CrossRefGoogle Scholar