Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T05:41:02.311Z Has data issue: false hasContentIssue false

A micromechanistic model of the combined combustion synthesis-densification process

Published online by Cambridge University Press:  03 March 2011

Yangsheng Zhang
Affiliation:
Institute for Self-Propagating High-Temperature Synthesis, New York State College of Ceramics at Alfred University, Alfred, New York 14802-1296
Gregory C. Stangle
Affiliation:
Institute for Self-Propagating High-Temperature Synthesis, New York State College of Ceramics at Alfred University, Alfred, New York 14802-1296
Get access

Abstract

A series of computer experiments has been conducted in order to study the combined combustion synthesis-densification process, in which a mechanical load is applied to a sample as it undergoes a combustion synthesis process. The current work is an extension of a theoretical model of the combustion synthesis process that was developed previously.1,2 In this work, the appropriate constitutive equations for sample deformation have been incorporated, in order to account for the pore-volume change that may take place when the mechanical load is applied, thus densifying the sample. It was shown that the brief appearance of a liquid phase in the combustion wave front provides an important opportunity for densification when the self-propagating combustion synthesis process is conducted in conjunction with an applied mechanical load. That is, the concomitant decrease in the (local) total volume fraction of the solid phases—due to the elementary melting and dissolution processes that also occur (locally)—effectively lowered the (local) apparent yield strength of the sample, thus allowing for the compaction and densification of the sample (i.e., locally). Results indicated that the mechanical load should be applied at the instant at which the sample is ignited, in order to ensure that articles whose density is uniform throughout the sample can be fabricated. This work provided a more detailed and quantitative understanding of this unique process for preparing dense articles by the self-propagating combustion synthesis process, that is, when it is conducted in conjunction with an applied mechanical load.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, Y. and Stangle, G. C., J. Mater. Res. 9, 25922604 (1994).CrossRefGoogle Scholar
2Zhang, Y. and Stangle, G. C., J. Mater. Res. 9, 26052619 (1994).CrossRefGoogle Scholar
3Marion, J. E., Hsueh, C. H., and Evans, A. G., J. Am. Ceram. Soc. 70, 708713 (1987).CrossRefGoogle Scholar
4Segal, D., Chemical Synthesis of Advanced Ceramic Materials (Cambridge University Press, Cambridge, 1989).CrossRefGoogle Scholar
5Sōmiya, S., Advanced Technical Ceramics (Academic Press, Inc., New York, 1984).Google Scholar
6Combustion and Plasma Synthesis ofHigh-Temperature Materials, edited by Munir, Z.A. and Holt, J.B. (VCH Publishers, Inc., New York, 1990).Google Scholar
7Varma, A. and Lebrat, J. P., Chem. Eng. Sci. 47, 21792194(1992).Google Scholar
8Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 279365 (1989).Google Scholar
9Merzhanov, A. G., a Keynote Talk presented at The International Symposium on Combustion and Plasma Synthesis of High-Temperature Materials, San Francisco, CA, Oct. 23–26, 1988.Google Scholar
10Pampuch, R., Lis, J., Piekarczyk, J., and Stobierski, L., J. Mater. Syn. Proc. 1, 93100 (1993).Google Scholar
11Wada, H. and Odawara, O., J. Mater. Syn. Proc. 1, 121124 (1993).Google Scholar
12Bhattacharya, A. K., J. Am. Ceram. Soc. 75, 16781681 (1992).CrossRefGoogle Scholar
13Lebrat, J-P., Varma, A., and Miller, A.E., Metall. Trans. A 23, 6976 (1992).CrossRefGoogle Scholar
14Yi, H. C., Moore, J. J., and Petric, A., Metall. Trans. A 23, 5964 (1992).CrossRefGoogle Scholar
15Matson, D. M. and Munir, Z. A., Mater. Sci. Eng. A153, 700705 (1992).CrossRefGoogle Scholar
16Low, I. M., J. Mater. Sci. Lett. 11, 715718 (1992).CrossRefGoogle Scholar
17Krueger, B. R., Mutz, A. H., and Vreeland, T. Jr., Metall. Trans. A 23, 5558 (1992).Google Scholar
18Deevi, S. C., Mater. Sci. Eng. A149, 241251 (1992).Google Scholar
19Rice, R. W., Richardson, G. Y., Kunetz, J. M., Schroeder, T., and McDonough, W.J., Ceram. Eng. Sci. Proc. 7, 736750 (1986).Google Scholar
20Zhou, Z. and Stangle, G. C., J. Mater. Sci. (1995, in press).Google Scholar
21Dunmead, S. D., Ready, D. W., Semler, C. E., and Holt, J. B., J. Am. Ceram. Soc. 72, 23182324 (1989).CrossRefGoogle Scholar
22Munir, Z. A., Metall. Trans. A 23, 713 (1992).CrossRefGoogle Scholar
23Lakshimikantha, M. G. and Sekhar, J. A., Metall. Trans. A 24, 617628 (1993).Google Scholar
24He, C., Ph.D. Dissertation, Alfred University (in progress).Google Scholar
25Song, I. and Thadhani, N. N., Metall. Trans. A 23, 4148 (1992).Google Scholar
26Hardt, A. P. and Phung, P. V., Combust, and Flame 21, 7789 (1973).Google Scholar
27Margolis, S. B., Prog. Energy Combust. Sci. 17, 135162 (1991).Google Scholar
28Puszynski, J., Degreve, J., and Hlavacek, V., Ind. Eng. Chem. Res. 26, 14241434 (1987).CrossRefGoogle Scholar
29Behrens, R. G. and Hansen, G. P., in Materials Processing by Self-Propagating High-Temperature Synthesis, edited by Gabriel, K. A., Wax, S. G., and McCauley, J. W., Materials Technology Laboratory Report MTL SP 87–3 (1987).Google Scholar
30Lakshniikantha, M. G., Bhattacharya, A. K., and Sekhar, J. A., Metall. Trans. A 23, 2334 (1992).Google Scholar
31Bhattacharya, A. K., Ceram. Eng. Sci. Proc. 12, 16971722 (1991).Google Scholar
32Dunmead, S. D., Munir, Z. A., and Holt, J.B., J. Am. Ceram. Soc. 75, 175179 (1992).Google Scholar
33Advani, A. H., Thadhani, N. N., Grebe, H. A., Heaps, R., Coffin, C., and Kottke, T., J. Mater. Sci. 27, 33093317 (1992).CrossRefGoogle Scholar
34Bhattacharya, A. K., J. Mater. Sci. 27, 30503061 (1992).CrossRefGoogle Scholar
35Varma, A., Cao, G., and Morbidell, M., AIChE J. 36, 10321038 (1990).Google Scholar
36Puszynski, J., Kumar, S., Dimitriou, P., and Hlavacek, V., Z. Naturforsch. 43a, 10171025 (1988).Google Scholar
37Dimitriou, P., Puszynski, J., and Hlaveck, V., Combust. Sci. Technol. 68, 101111 (1989).Google Scholar
38Margolis, S. B., Metall. Trans. A 23, 1522 (1992).Google Scholar
39Bayliss, A. and Matkowsky, B. J., SIAM J. Appl. Math. 50, 437459 (1990).CrossRefGoogle Scholar
40Merzhanov, A. G. and Khaikin, B. I., Prog. Energy Combust. Sci. 14, 198 (1988).CrossRefGoogle Scholar
41Vecchio, K. S., LaSalvia, J. C., Meyers, M. A., and Gray, G.T. III, Metall. Trans. A 23, 8797 (1992).CrossRefGoogle Scholar
42Rabin, B. H., Korth, G. E., and Williamson, R. L., J. Am. Ceram. Soc. 73, 21562157 (1990).CrossRefGoogle Scholar
43Rabin, B. H. and Wright, R. N., Metall. Trans. A 23, 3540 (1992).Google Scholar
44Hoke, D. A., Meyers, M. A., Meyer, L. W., and Gray, G.T. III, Metall. Trans. A 23, 7786 (1992).CrossRefGoogle Scholar
45J.C. LaSalvia, Meyers, L. W., and Meyers, M.A., J. Am. Ceram. Soc. 75, 592602 (1992).Google Scholar
46Kecskes, L. J., Kottke, T., Netherwood, P. H. Jr., Benck, R. F., and Niiler, A., Ballistic Research Laboratory Report, BRL–TR-3133 (1990).Google Scholar
47Odawara, O. and Ikeuchi, J., J. Am. Ceram. Soc. 69, C80C81 (1986).Google Scholar
48Odawara, O., Int. J. Self-Propagating High-Temperature Synthesis 1, 160167 (1992).Google Scholar
49Coy, M. A., M. S. Thesis, Alfred University, Alfred, NY (1993).Google Scholar
50Toth, L. E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
51Kanatani, K-L., Powder Technol. 28, 167172 (1981).CrossRefGoogle Scholar
52Shahinpoor, M., in Advances in the Mechanics and the Flow of Granular Materials, edited by Shahinpoor, M. (Gulf Publishing Co., Houston, TX, 1983), Vol. 1, pp. 297330.Google Scholar
53Cundall, P. A., in Micromechanics of Granular Materials, edited by Satake, M. and Jenkins, J.T. (Elsevier, Amsterdam, 1988), pp. 113123.Google Scholar
54Soo, S. L., in Advances in the Mechanics and the Flow of Granular Materials, edited by Shahinpoor, M. (Gulf Publishing Co., Houston, TX, 1983), Vol. 2, pp. 675698.Google Scholar
55Digby, P. J., J. Appl. Mech. 48, 803808 (1981).Google Scholar
56Cundall, P. A. and Strack, O. D.L., Geotechnique 29, 4765 (1979).Google Scholar
57Walton, K., J. Mech. Phys. Solids, 35, 213226 (1987).Google Scholar
58Thornton, C. and Barnes, D. J., Acta Mech. 64, 4561 (1986).Google Scholar
59Mehrabadi, M. M. and Nemat-Nasser, S., Mech. Mater. 2, 155161 (1983).Google Scholar
60Ahmadi, G. and Farshad, M., Ind. J. Technol. 12, 195198 (1974).Google Scholar
61Vardoulakis, I. and Beskos, D. E., Mech. Mater. 5, 87108 (1986).CrossRefGoogle Scholar
62Jenkins, J. T., J. Appl. Mech. 42, 603606 (1975).Google Scholar
63Wang, P. T., Powder Technol. 54, 107118 (1988).Google Scholar
64Morland, L. W., Arch. Mech. 27, 883887 (1975).Google Scholar
65Prevost, J. H., Int. J. Eng. Sci. 18, 787800 (1980).Google Scholar
66Drumheller, D. S., Int. J. Solids Structures 14, 441456 (1978).Google Scholar
67Berryman, J. G. and Thigpen, L., in Physics and Chemistry of Porous Media II, edited by Banavar, J. R., Kopli, J., and Winkler, K. W. (American Institute of Physics, New York, 1987), pp. 209228.Google Scholar
68Goodman, M. A. and Cowin, S. C., Arch. Rational Mech. Anal. 44, 249266 (1972).CrossRefGoogle Scholar
69Bowen, R. M., in Continuum Physics III: Mixtures and EM Field Theories, edited by Eringen, A.C. (Academic Press, New York, 1976), pp. 1127.Google Scholar
70Green, A. E. and Rivlin, R. S., Arch. Rational Mech. Anal. 17, 113147 (1964).Google Scholar
71Albias, J. B., Symp. Math. 1, 229251 (1968).Google Scholar
72Eringen, A. C. and Suhubi, E. S., Int. J. Eng. Sci. 2, 189203 (1964).CrossRefGoogle Scholar
73Suhubi, E. S. and Eringen, A. C., Int. J. Eng. Sci. 2, 389404 (1964).CrossRefGoogle Scholar
74Kafadar, C. B. and Eringen, A. C., Int. J. Eng. Sci. 9, 271305 (1971).Google Scholar
75Eringen, A. C., Int. J. Eng. Sci. 5, 191204 (1967).Google Scholar
76Ahmadi, G., Int. J. Non-Linear Mechanics 17, 2133 (1982).CrossRefGoogle Scholar
77Ahmadi, G., Int. J. Non-Linear Mechanics 15, 251262 (1980).Google Scholar
78Ahmadi, G., in Advances in the Mechanics and the Flow of Granular Materials, edited by Shahinpoor, M. (Gulf Publishing Co., Houston, TX, 1983), Vol. 2, pp. 497527.Google Scholar
79Ahmadi, G. and Sohrabpour, S., Int. J. Non-Linear Mechanics 14, 133142 (1979).Google Scholar
80Ahmadi, G., Scientia Sinica 24, 179188 (1981).Google Scholar
81Eringen, A. C., Int. J. Eng. Sci. 8, 819828 (1970).CrossRefGoogle Scholar
82Eringen, A. C., Int. J. Eng. Sci. 10, 623641 (1972).Google Scholar
83Germain, P., SIAM J. Appl. Math. 25, 556575 (1973).CrossRefGoogle Scholar
84Hashin, Z., J. Appl. Mech. 50, 481505 (1983).CrossRefGoogle Scholar
85Dederichs, P. H. and Zeller, R., Z. Phys. 259, 103116 (1973).Google Scholar
86Kroner, E., J. Mech. Phys. Solids 25, 137155 (1977).Google Scholar
87Hashin, Z. and Shtrikman, S., J. Mech. Phys. Solids 11, 127140(1963).CrossRefGoogle Scholar
88Chandler, H. W. and Song, J. H., Chem. Eng. Sci. 45, 13591366(1990).Google Scholar
89Sen, P. N., in Macroscopic Properties of Disordered Media, edited by Burridge, R., Childress, S., and Papanicolaou, G. (Springer-Verlag, New York, 1981), pp. 226238.Google Scholar
90Kantor, Y. and Webman, I., Phys. Rev. Lett. 52, 18911894(1984).Google Scholar
91Carroll, M. M. and Holt, A. C., J. Appl. Phys. 43, 16261635(1972).Google Scholar
92Carroll, M. and Holt, A. C., J. Appl. Phys. 43, 759761 (1972).CrossRefGoogle Scholar
93Batchelor, G. K. and O'Brien, R. W., Proc. R. Soc. London A 355, 313333 (1977).Google Scholar
94Ridgeway, K. and Tarbuk, K. J., Br. Chem. Eng. 12, 384388(1967).Google Scholar
95Viskanta, R. and Anderson, E. E., Adv. Heat Transfer 11, 317441(1975).Google Scholar
96Goedecke, G. H., J. Opt. Soc. Am. 67, 13391348 (1977).Google Scholar
97Wang, K. Y. and Tien, C. L., J. Quant. Spectres. Radiat. Transfer 30, 213223 (1983).CrossRefGoogle Scholar
98Drolen, B. L. and Tien, C. L., J. Thermophysics 1, 6368 (1987).Google Scholar
99Glamant, G., Menigault, T., and Schwander, D., J. Heat Transfer 110, 463467 (1988).CrossRefGoogle Scholar
100Viskanta, R. and Menguc, M. P., Appl. Mech. Rev. 42, 241259 (1989).Google Scholar
101Scheidegger, A. E., The Physics of Flow through Porous Media, 3rd ed. (University of Toronto Press, Toronto, 1974).Google Scholar
102Dullien, F. A. L., Porous Media: Fluid Transport and Pore Structure (Academic Press, New York, 1979).Google Scholar
103Cussler, E. L., Mass Transfer (McGraw-Hill, New York, 1988).Google Scholar
104Zhang, Y. and Stangle, G. C., J. Mater. Res. 10, 962980 (1995).Google Scholar
105Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley, New York, 1976).Google Scholar
106Bhattacharya, A. K., J. Am. Ceram. Soc. 74, 21132116 (1991).Google Scholar
107Rice, R. W., J. Mater. Sci. 26, 65336541 (1991).Google Scholar
108Dunmead, S. D., Munir, Z. A., Holt, J. B., and Kingman, D.D., in Combustion and Plasma Synthesis of High-Temperature Materials, edited by Munir, Z.A. and Holt, J. B. (VCH Publishers, Inc., New York, 1990), pp. 229237.Google Scholar
109Work, S. J., Yu, L. H., Thadhani, N. N., Meyers, M. A., Graham, R. A., and Hammetter, W. F., in Combustion and Plasma Synthesis of High-Temperature Materials, edited by Munir, Z. A. and Holt, J.B. (VCH Publishers, Inc., New York, 1990), pp. 133143.Google Scholar
110Kecskes, L. J., Kottke, T., Netherwood, P. H. Jr., Benck, R. F., and Niiler, A., Ballistic Research Laboratory Technical Report BRL-TR-3133 (1990).Google Scholar