Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T15:21:21.006Z Has data issue: false hasContentIssue false

Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices

Published online by Cambridge University Press:  31 January 2011

Bharat Bhushan
Affiliation:
Computer Microtribology and Contamination Laboratory, Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210
Xiaodong Li
Affiliation:
Computer Microtribology and Contamination Laboratory, Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210
Get access

Abstract

Microelectromechanical systems (MEMS) devices are made of doped single-crystal silicon, LPCVD polysilicon films, and other ceramic films. Very little is understood about tribology and mechanical characterization of these materials on micro- to nanoscales. Micromechanical and tribological characterization of p-type (lightly boron-doped) single-crystal silicon (referred to as “undoped”), p+-type (boron doped) single-crystal silicon, polysilicon bulk, and n+-type (phosphorous doped) LPCVD polysilicon films have been carried out. Hardness, elastic modulus, and scratch resistance of these materials were measured by nanoindentation and microscratching using a nanoindenter. Friction and wear properties were measured using an accelerated ball-on-flat tribometer. It is found that the undoped silicon and polysilicon bulk as well as n+-type polysilicon film exhibit higher hardness and elastic modulus than the p+-type silicon. The polysilicon bulk and n+-type polysilicon film exhibit the lowest friction and highest resistance to scratch and wear followed by the undoped silicon and with the poorest behavior of the p+-type silicon. During scratching, the p+-type silicon deforms like a ductile metal.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Angell, J. B., Terry, S. C., and Barth, P. W., Sci. Am. 248 (3), 3647 (1983).CrossRefGoogle Scholar
2.Howe, R. T., J. Vac. Sci. Technol. B 6, 18091813 (1988).CrossRefGoogle Scholar
3.Tai, Y. C. and Muller, R. S., Sensors and Actuators 20, 4955 (1989).CrossRefGoogle Scholar
4.Fan, L. S., Tai, Y. C., and Muller, R. S., Sensors and Actuators 20, 4147 (1989).CrossRefGoogle Scholar
5.Tang, W. C., Lim, T. G., and Howe, R. T., Technical Digest of IEEE Solid-State Sensors and Actuator Workshop, held at Hilton Head Island, SC, June 1990.Google Scholar
6.Brennan, R. A., Lin, M. G., Pisano, A. P., and Chou, A. T., Technical Digests of IEEE Solid-State Sensors and Actuator Workshop, Hilton Head Island, SC, 1990.Google Scholar
7.Howe, R. T., Muller, R. S., Gabriel, K. J., and Trimmer, W. S. N., IEEE Spectrum, July, 29–35 (1990).Google Scholar
8.Mehregany, M., Gabriel, K. J., and Trimmer, W. S. N., Sensors and Actuators 12, 341348 (1990).Google Scholar
9.Microsensors, edited by Muller, R. S., Howe, R. T., Senturia, S. D., Smith, R. L., and White, R. L., Catalog No. PC 02576 (IEEE, New York, 1990).Google Scholar
10.Mehregany, M. and Tai, Y. C., J. Micromech. Microeng. 1, 7385 (1991).Google Scholar
11.Mehregany, M., Circuits and Devices, July, 14–22 (1993).CrossRefGoogle Scholar
12.Bryzek, J., Peterson, K., and McCulley, W., IEEE Spectrum, May, 20–31 (1994).CrossRefGoogle Scholar
13.Ogura, J., Maeda, S., Nakamura, K., Sangawa, U., Azuma, N., Aoki, S., Kawauchi, Y., and Sato, T., IEEE Proc. MEMS, 114–118 (1994).Google Scholar
14.Lazzari, J. P. and Deroux-Dauphin, P., IEEE Trans. Magn. 25, 31903193 (1989).Google Scholar
15.Bhushan, B., Dominiak, M., and Lazzari, J. P., IEEE Trans. Magn. 28, 28742876 (1992).Google Scholar
16.Ohwe, T., Mizoshita, Y., and Yoneoka, S., IEEE Trans. Magn. 29, 39243926 (1993).Google Scholar
17.Hamilton, H., J. Mag. Soc. Japan 15, Supp. S2, 483491 (1991).CrossRefGoogle Scholar
18.Temesvary, V., Wu, S., Hsieh, W.H., Tai, Y. C., and Miu, D. K., J. MEMS 4, 1827 (1995).Google Scholar
19.Miu, D. K. and Tai, Y. C., IEEE Trans. Indus. Electronics 42, 234239 (1995).Google Scholar
20.Fan, L. S., Ottesen, H. H., Reiley, T. C., and Wood, R. W., IEEE Trans. Indus. Electronics 42, 222233 (1995).Google Scholar
21.Fan, L. S. and Woodman, S., The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, June 1995, pp. 434437.Google Scholar
22.Bhushan, B. and Gupta, B. K., Hard Coatings for Wear Reduction, Corrosion/Erosion Protection, and Biomaterials, edited by Bunshah, R. F. (Noyes Publications, Park Ridge, NJ, in press).Google Scholar
23.Guckel, H. and Burns, D. W., Sensors and Actuators 20, 117122 (1989).Google Scholar
24.Jaeger, R. C., Introduction to Microelectronic Fabrication (Addison-Wesley, Reading, MA, 1988), Vol. 5.Google Scholar
25.Bhushan, B. and Venkatesan, S., Adv. Info. Storage Syst. 5, 211239 (1993).Google Scholar
26.Bhushan, B. and Venkatesan, S., J. Mater. Res. 8, 16111628 (1993).Google Scholar
27.Venkatesan, S. and Bhushan, B., Adv. Info. Storage Syst. 5, 241257 (1993).Google Scholar
28.Gupta, B. K., Chevallier, J., and Bhushan, B., ASME J. Tribol. 115, 392399 (1993).CrossRefGoogle Scholar
29.Gupta, B. K. and Bhushan, B., Tribol. Trans. 37, 601607 (1994).Google Scholar
30.Venkatesan, S. and Bhushan, B., Wear 171, 2532 (1994).Google Scholar
31.Gupta, B. K. and Bhushan, B., Surf. Coatings Technol. 68/69, 564570 (1994).Google Scholar
32.Bhushan, B. and Koinkar, V. N., J. Appl. Phys. 75, 57415746 (1994).Google Scholar
33.Bhushan, B., Proc. Ninth Annual International Workshop on Micro Electro Mechanical Systems (IEEE, New York, 1996), pp. 9198.Google Scholar
34.Bhushan, B. and Koinkar, V. N., Sensors and Actuators (in press).Google Scholar
35.Mehregany, M., Howe, R. T., and Senturia, S. D., J. Appl. Phys. 62, 35793584 (1987).Google Scholar
36.Ericson, F. and Schweitz, J. A., J. Appl. Phys. 68, 58405844 (1990).Google Scholar
37.Schweitz, J. A., J. Micromech. Microeng. 1, 1015 (1991).CrossRefGoogle Scholar
38.Guckel, H., Burns, D., Rutigliano, C., Lovell, E., and Choi, B., J. Micromech. Microeng. 2, 8695 (1992).Google Scholar
39.Hjort, K., Ericson, F., and Schweitz, J. A., Sensors and Materials 6, 359367 (1994).Google Scholar
40.Fang, W. and Wickert, J. A., J. Micromech. Microeng. 5, 276281 (1995).Google Scholar
41.Bhushan, B., Kulkarni, A. V., Koinkar, V. N., Boehm, M., Odoni, L., Martelet, C., and Belin, M., Langmuir 11, 31893198 (1995).Google Scholar
42.Deng, K., Collins, R. J., Mehregany, M., and Sukenik, C. N., Proc. MEMS 95, Amsterdam, Jan.–Feb. 1995.Google Scholar
43.Beerschwinger, U., Albrecht, T., Mathieson, D., Reuben, R. L., Yang, S. J., and Taghizadeh, M., Wear 181–183, 426435 (1995).Google Scholar
44.Koinkar, V. N. and Bhushan, B., J. Vac. Sci. Technol. A14, 23782391 (1996).Google Scholar
45.Bhushan, B., Handbook of Micro/Nanotribology (CRC, Boca Raton, FL, 1995).Google Scholar
46.Bhushan, B., Gupta, B. K., and Azarian, M., Wear 181–183, 743758 (1995).Google Scholar
47.Bhushan, B. and Gupta, B. K., Adv. Info. Storage Syst. 6, 193208 (1995).Google Scholar