Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:57:22.139Z Has data issue: false hasContentIssue false

Metallic glass-forming composition range of the Cu–Zr–Ti ternary system determined by molecular dynamics simulations with many-body potentials

Published online by Cambridge University Press:  22 February 2011

B. Qin
Affiliation:
Advanced Materials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
W.S. Lai*
Affiliation:
Advanced Materials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

An n-body Cu–Zr–Ti potential is constructed and applied to evaluate a glass-forming composition range (GFR) of the Cu–Zr–Ti ternary system by molecular dynamics simulations using a solid-solution model, which is formed via random substitution of solvent atoms by a certain number of solute atoms. It is found that the GFR of the Cu–Zr–Ti ternary system is located within an approximate distorted quadrilateral composition region, in which the solid solutions are unstable and spontaneously collapse to form amorphous phases. The compositions of the four vertexes of the distorted quadrilateral are determined to be Cu22Zr78Ti0, Cu24Zr0Ti76, Cu56Zr0Ti44, and Cu72Zr28Ti0, respectively. In addition, the simulation results are in good agreement with the experimental observations and compatible with some empirical rules.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).Google Scholar
2.Ruhl, R.C., Giessen, B.C., Cohen, M., and Grant, N.J.: New microcrystalline phase in Nb–Ni and Ta–Ni system. Acta Metall. 15, 1693 (1967).Google Scholar
3.Poon, S.J. and Carter, W.L.: Amorphous superconductors based on the 4D series. Solid State Commun. 35, 249 (1980).Google Scholar
4.Egami, T.: Atomistic mechanism of bulk metallic glass formation. J. Non-Cryst. Solids 317, 30 (2003).CrossRefGoogle Scholar
5.Hellstern, E. and Schultz, L.: Glass forming ability in mechanically alloyed Fe–Zr. Appl. Phys. Lett. 49, 1163 (1986).Google Scholar
6.Eckert, J., Schultz, L., Heilstern, E., and Urban, K.: Glass-forming range in mechanically alloyed Ni–Zr and the influence of the milling intensity. J. Appl. Phys. 64, 3224 (1988).Google Scholar
7.Zhang, Z.J., Bai, H.Y., Qiu, Q.L., Yang, T., Tao, K., and Liu, B.X.: Phase evolution upon ion mixing and solid-state reaction and thermodynamic interpretation in the Ni–Nb system. J. Appl. Phys. 73, 1702 (1993).CrossRefGoogle Scholar
8.Thompson, M.W.: Defects and Radiation Damage in Metals (Cambridge University Press, Cambridge, MA, 1969), Chaps. 4 and 5.Google Scholar
9.Lu, Z.P., Tan, H., Li, Y., and Ng, S.C.: The correlation between reduced glass transition temperature and glass-forming ability of bulk metallic glasses. Scr. Mater. 42, 667 (2000).Google Scholar
10.Egami, T.: The atomic structure of aluminum based metallic glasses and universal criterion for glass formation. J. Non-Cryst. Solids 207, 575 (1996).Google Scholar
11.Kaufman, L.: Coupled phase-diagrams and thermochemical data for transion-metal binary system- III. Calphad 2, 117 (1978).CrossRefGoogle Scholar
12.Murray, J.L.: The Cu–Ti (copper-titanium) system. Bull. Alloy Phase Diagr. 4, 81 (1983).CrossRefGoogle Scholar
13.Saunders, N.: Phase-diagram calculations for 8 glass forming alloy systems. Calphad 9, 297 (1985).Google Scholar
14.Schwarz, R.B., Nash, P., and Turnbull, D.: The use of thermodynamic models in the prediction of the glass-forming range of binary alloy. J. Mater. Res. 2, 456 (1987).CrossRefGoogle Scholar
15.Basu, J., Murty, B.S., and Ranganathan, S.: Glass-forming ability: Miedema approch to (Zr, Ti, Hf)–(Cu, Ni). J. Alloys Compd. 465, 163 (2008).CrossRefGoogle Scholar
16.Zhang, Q., Li, Z.C., Lin, C., Liu, B.X., and Ma, E.: Glass-forming range of the Ni–Mo system derived from molecular dynamics simulation and generalized lindemann criterion. J. Appl. Phys. 87, 4147 (2000).CrossRefGoogle Scholar
17.Zhang, Q., Lai, W.S., and Liu, B.X.: Glass-forming ability determined by the atomic interaction potential for the Ni–Mo system. Phys. Rev. B 59, 3521 (1999).CrossRefGoogle Scholar
18.Klueh, R.L., Shingledecker, J.P., Swindeman, R.W., and Hoelzer, D.T.: Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys. J. Nucl. Mater. 341, 103 (2005).CrossRefGoogle Scholar
19.Liu, B.X., Li, J.H., and Lai, W.S.: Interatomic potential to predict the binary metallic glass formation. J. Mater. Res. 5, 976 (2010).CrossRefGoogle Scholar
20.Dai, Y., Li, J.H., Che, X.L., and Liu, B.X.: Glass-forming region of the Ni–Nb–Ta ternary metal system determined directly from n-body potential through molecular dynamics simulations. J. Mater. Res. 24, 1815 (2009).Google Scholar
21.Cleri, F. and Rosato, V.: Tight-binding potentials for transition-metal and alloys. Phys. Rev. B 48, 22 (1993).Google Scholar
22.Willaime, F. and Massobrio, C.: Developement of an n-body interatomic potential for hcp and bcc zirconium. Phys. Rev. B 43, 11657 (1991).CrossRefGoogle Scholar
23.Ghosh, G.: First-principle calculations of structural energetics of Cu–TM (TM = Ti, Zr, Hf) intermetallics. Acta Mater. 55, 3347 (2007).CrossRefGoogle Scholar
24.Kittel, C.: Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 55.Google Scholar
25.Ansara, I., Pasturel, A., and Buschow, K.H.J.: Enthalpy effects in amorphous-alloy and intermetallic compounds in the system Zr–Cu. Phys. Status Solidi A 69, 447 (1982).Google Scholar
26.Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregated Properties: A Handbook, 2nd ed. (M.I.T. Press, Cambridge, MA, 1971).Google Scholar
27.Mendelev, M.I., Kramer, M.J., Becker, C.A., and Asta, M.: Analysis of semi-empirical interatomic potentials appropriate for simulation of cystalline and liquid Al and Cu. Philos. Mag. 88, 1723 (2008).Google Scholar
28.Shestopal, V.O.: Specific heat and vacancy formation in titanium at high temperature. Sov. Phys. Solid State 7, 2798 (1966).Google Scholar
29.Parrinello, M. and Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
30.Cheng, Y.Q. and Ma, E.: Configurational dependence of elastic modulus of metallic glass. Phys. Rev. B 80, 064104 (2009).Google Scholar
31.Lai, W.S. and Zhao, X.S.: Strain-induced elastic moduli softening and associated fcc-bcc transition in iron. Appl. Phys. Lett. 85, 4340 (2004).Google Scholar
32.Faken, D. and Jónsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 (1994).Google Scholar
33.Li, J.H., Dai, X.D., Liang, S.H., Tai, K.P., Kong, Y., and Liu, B.X.: Interatomic potentials of the binary transition metal systems and some applications in materials physics. Phys. Rep. 445, 1 (2008).Google Scholar
34.Qin, B. and Lai, W.S.: A molecular dynamics study of an hcp-to-fco martensitic transformation and its crystallographic correlation in a Ti lattice, upon dissolution of Cu atoms. J. Phys. Soc. Jpn. 79, 104601 (2010).Google Scholar
35.Concustell, A., Zielinska, M., Révész, Á., Varga, L.K., Suriñach, S., and Baró, M.D.: Thermal characterization of Cu60ZrxTi40–x metallic glasses (x = 15, 20, 22, 25, 30). Intermetallics 12, 1063 (2004).Google Scholar
36.Men, H., Pang, S.J., and Zhang, T.: Glass-forming ability and mechanical properties of Cu50Zr50–xTix alloys. Mater. Sci. Eng., A 408, 326 (2005).Google Scholar
37.Chou, H.S., Huang, J.C., Chang, L.W., and Nieh, T.G.: Structure relaxation and nanoindentation response in Zr–Cu–Ti amorphous thin films. Appl. Phys. Lett. 93, 91901 (2008).Google Scholar
38.Shen, Y.T., Xing, L.Q., and Kelton, K.F.: Formation and crystallization of ZrCuTi metallic glasses. Philos. Mag. 85, 3673 (2005).Google Scholar
39.Egami, T. and Waseda, Y.: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
40.Liu, B.X., Johnson, W.L., Nicolet, M-A., and Lau, S.S.: Structural difference rule for amorphous alloy formation by ion mixing. Appl. Phys. Lett. 42, 45 (1983).Google Scholar
41.Qi, Y., Çagin, T., Kimura, Y., and Goddard, W.A.: Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu–Ag and Cu–Ni. Phys. Rev. B 59, 3527 (1999).CrossRefGoogle Scholar
42.Kleppa, O.J. and Watanabe, S.: Thermochemistry of alloys of transtion-metals: Part III. Copper-silver, copper-titanium, copper-zirconium, and copper-hafnium at 1373 K. Metall. Trans. B 13, 391 (1982).CrossRefGoogle Scholar
43.Nevitt, M.N. and Downey, J.W.: A family of intermediate phases having the Si2Mo-type structure. Trans. Metall. Soc. AIME 224, 195 (1962).Google Scholar
44.Zeng, K.J., Hämäläinen, M., and Lukas, H.L.: A new thermodynamic description of the Cu–Zr system. J. Phase Equilib. 15, 577 (1994).CrossRefGoogle Scholar
45.Forey, P., Glimois, J.L., and Feron, J.L.: Structural study of ternary (Ni1–xCux)5Zr alloys. J. Less-Common Met. 124, 21 (1986).CrossRefGoogle Scholar
46.Eremenko, V.H., Buyanov, Y.I., and Prima, S.B.: Phase diagram of the system titanium-copper. Sov. Powder Met. 5, 494 (1966).CrossRefGoogle Scholar
47.Colinet, C., Pasturel, A., and Buschow, K.H.J.: Enthalpies of formation of Ti–Cu intermetallic and amorphous phases. J. Alloys Compd. 247, 15 (1997).CrossRefGoogle Scholar
48.Subramanian, P.R.: Phase Diagrams of Binary Copper Alloys, edited by Subramanian, P.R., Chakrabarti, D.J., and Laughlin, D.E. (ASM International, Materials Park, OH, 1994), p. 447.Google Scholar
49.Raub, E., Walter, P., and Engel, M.: Die legierungen des titans mit kupfer, silber und gold [The alloys of titanium with copper, silver and gold]. Z. Metallkd. 43, 112 (1952).Google Scholar
50.Ikehata, H., Nagasako, N., Futura, T., Fukumoto, A., Miwa, K., and Saito, T.: First-principle calculations for development of low elastic modulus Ti alloys. Phys. Rev. B 70, 174113 (2004).CrossRefGoogle Scholar