Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T18:51:26.510Z Has data issue: false hasContentIssue false

Memory effect of ZrO2 matrix on surface Co3O4–CoO transition

Published online by Cambridge University Press:  03 March 2011

H.C. Zeng*
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
J. Lin
Affiliation:
Department of Physics, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
K.L. Tan
Affiliation:
Department of Physics, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Cobalt oxide system Co3O4-CoO has been studied on the ZrO2 matrix surfaces with FTIR and XPS. The tetragonal and monoclinic ZrO2 matrix materials have been synthesized from the Zr-n-propoxide-acetylacetone-water-isopropanol system. The study shows that the ZrO2 matrix is able to retain the relative Co3O4:CoO population at elevated temperatures. The thermodynamically stable oxide population (Co3O4:CoO) at room temperature for ZrO2-supported Co3O4-CoO is about 50:50 (Co2+ :Co3+ = 2:1), which is markedly different from the 100:0 case (Co2+ :Co3+ = 1:2) for an unsupported Co3O4-CoO surface oxide system. The relative Co3O4 :CoO ratio in the surface region of the ZrO2 is temperature dependent but matrix-polymorph independent. The composition of an oxide solid solution formed by the Co3O4-CoO and matrices of ZrO2 is determined to have a cobalt molar percentage of 4.5%. Diffusion thermodynamic quantities are investigated, and the measured diffusion activation energy for a cobalt ion in the ZrO2 matrices is 0.21 eV. The mechanism of the ZrO2 memory effect on surface Co3O4-CoO transition will also be addressed.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kamamurthi, S.D., Xu, Z., and Payne, D.A., J. Am. Ceram. Soc. 73, 2760 (1990).CrossRefGoogle Scholar
2Maschio, R.D., Filipponi, M., Soraru, G.D., Carturan, G., and Felice, G. M. D., Ceram. Bull. 71, 204 (1992).Google Scholar
3Vesteghem, H., Lecomte, A., and Dauger, A., J. Non-Cryst. Solids 147 & 148, 503 (1992).CrossRefGoogle Scholar
4Monros, G., Carda, J., Tena, M. A., Escribano, P., Sales, M., and Alarcon, J., J. Non-Cryst. Solids 147 & 148, 588 (1992).CrossRefGoogle Scholar
5Guinebretiere, R., Dauger, A., Lecomte, A., and Vesteghem, H., J. Non-Cryst. Solids 147 & 148, 542 (1992).CrossRefGoogle Scholar
6Yamada, K., Chow, T.Y., Horihata, T., and Nagata, M., J. Non- Cryst. Solids 100, 316 (1988).CrossRefGoogle Scholar
7Chaumont, D., Craievich, A., and Zarzycki, J., J. Non-Cryst. Solids 147 & 148, 41 (1992).CrossRefGoogle Scholar
8Zeng, H.C. and Shi, S., J. Non-Cryst. Solids 185, 31 (1995).CrossRefGoogle Scholar
9Zeng, H. C., Lin, J., Teo, W. K., Loh, F. C., and Tan, K. L., J. Non-Cryst. Solids 181, 49 (1995).CrossRefGoogle Scholar
10Mercera, P.D.L., van Ommen, J.G., Doesburg, E.B.M., Burggraaf, A.J., and Ross, J.R.H., Appl. Catalysis 71, 363 (1991).CrossRefGoogle Scholar
11Mercera, P.D.L., van Ommen, J.G., Doesburg, E.B.M., Burggraaf, A.J., and Ross, J. R. H., Appl. Catalysis 57, 127 (1990).CrossRefGoogle Scholar
12Tanabe, K., Mater. Chem. Phys. 13, 347 (1985).CrossRefGoogle Scholar
13Turlier, P., Praliaud, H., Moral, P., Martin, G. A., and Dalmon, J. A., Appl. Catal. 19, 287 (1985).CrossRefGoogle Scholar
14Gavalas, G.R., Phichitkul, C., and Voecks, G.E., J. Catal. 88, 54 (1984).CrossRefGoogle Scholar
15Smith, K.E., Kershaw, R., Dwight, K., and Wold, A., Mater. Res. Bull. 22, 1125 (1987).CrossRefGoogle Scholar
16Naraynan, S. and Sreekanth, G., J. Chem. Soc., Faraday Trans. 185, 3785 (1985).Google Scholar
17Marginean, P. and Olariu, A., J. Catal. 95, 1 (1985).CrossRefGoogle Scholar
18Bruce, L. A. and Mathews, J.F., Appl. Catalysis 4, 353 (1982).CrossRefGoogle Scholar
19Bruce, L.A., Hope, G. J., and Mathews, J.F., Appl. Catalysis 8, 349 (1983).CrossRefGoogle Scholar
20Zeng, H. C., Lin, J., Teo, W. K., Wu, J. C., and Tan, K. L., J. Mater. Res. 10, 545 (1995).CrossRefGoogle Scholar
21Kim, K.S., Phys. Rev. B 11, 2178 (1975).Google Scholar
22Chuang, T. J., Brundle, C. R., and Rice, D. W., Surf. Sci. 59, 413 (1976).CrossRefGoogle Scholar
23Mitton, D. B., Walton, J., and Thompson, G. E., Surf. Interface Anal. 20, 36 (1993).CrossRefGoogle Scholar
24McIntyre, N. S., Johnston, D. D., Coatsworth, L.L., and Davidson, R.D., Surf. Interface Anal. 15, 265 (1990).CrossRefGoogle Scholar
25Oku, M. and Sato, Y., Appl. Surf. Sci. 55, 37 (1992).CrossRefGoogle Scholar
26Atik, M., Zarzycki, J., and R'Kha, C., J. Mater. Sci. Lett. 13, 266 (1994).CrossRefGoogle Scholar
27Sakka, S., J. Non-Cryst. Solids 73, 651 (1985).CrossRefGoogle Scholar
28Dislich, H. and Hussmann, E., Thin Solid Films 77, 129 (1981).CrossRefGoogle Scholar
29Izumi, K., Murakami, M., Deguchi, T., and Morita, A., J. Am. Ceram. Soc. 72, 1465 (1989).CrossRefGoogle Scholar
30Debsikdar, J.C., J. Non-Cryst. Solids 86, 231 (1986).CrossRefGoogle Scholar
31Atik, M. and Aegerter, M.A., J. Non-Cryst. Solids 147 & 148, 813 (1992).CrossRefGoogle Scholar
32Phillippi, C. M. and Mazdiyasni, K. S., J. Am. Ceram. Soc. 54, 254 (1971).CrossRefGoogle Scholar
33Perry, E.M., Cocke, D. L., and Miller, M. K., Appl. Surf. Sci. 44, 321 (1990).CrossRefGoogle Scholar
34Hughes, A. E., Ciacchi, F. T., and Badwai, S.P.S., J. Mater. Chem. 4, 257 (1994).CrossRefGoogle Scholar
35Christie, A. B., in Methods of Surface Analysis, edited by Walls, J. M. (Cambridge University Press, New York, 1988), p. 127.Google Scholar
36Barr, T.L., J. Vac. Sci. Technol. A9, 1793 (1991).CrossRefGoogle Scholar
37Webb, T.L. and Kruger, J.E., in Differential Thermal Analysis, Vol. 1, Fundamental Aspects, edited by Mackenzie, R.C. (Academic Press, London, 1970), Chap. 10, p. 330.Google Scholar
38Beck, C.W., Am. Miner. 35, 985 (1950).Google Scholar
39Mallya, R. W. and Murthy, A.R.V., J. Indian Inst. Sci. 43, 87 (1961).Google Scholar
40Giamello, K., Volante, M., Fubinl, B., Geobaldo, F., and Morterra, C., Mater. Chem. Phys. 29, 279 (1991).CrossRefGoogle Scholar
41Mayer, J. W. and Lau, S.S., Electronic Materials Science (Maxwell-Macmillan, New York, 1990), p. 183.Google Scholar