Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T13:07:22.856Z Has data issue: false hasContentIssue false

The mechanism of mechanical alloying of MoSi2

Published online by Cambridge University Press:  31 January 2011

S.N. Patankar
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204
S-Q. Xiao
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204
J.J. Lewandowski
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204
A.H. Heuer
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204
Get access

Abstract

An incubation time exists for the formation of MoSi2 by mechanical alloying (MA). For the particular milling conditions employed, the bulk of MoSi2 formation occurs between 3 h and 12 min and 3 h and 13 min. This abrupt formation of MoSi2 during MA suggests that the reaction occurs by a form of self-propagating high-temperature synthesis (SHS), when a critical amount of stored energy (in the form of interfacial energy and cold work) is introduced by MA, and increases the adiabatic reaction temperature sufficiently to make the reaction self-sustaining.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Vasudevan, A. K. and Petrovic, J. J., Mater. Sci. Eng. A155, 1 (1992).CrossRefGoogle Scholar
2Maloy, S.A., Heuer, A. H., Lewandowski, J. J., and Petrovic, J. J., J. Am. Ceram. Soc. 74 (10), 2704 (1991).Google Scholar
3Maloy, S.A., Lewandowski, J.J., Heuer, A.H., and Petrovic, J.J., Mater. Sci. Eng. A155, 159 (1992).CrossRefGoogle Scholar
4Aikin, R.M. Jr, Scripta Metall. et Mater. 26, 1025 (1992).CrossRefGoogle Scholar
5Deevi, S.C., J. Mater. Sci. 26, 3343 (1991); Mater. Sci. Eng. A149, 241 (1992).Google Scholar
6Aikin, R. M. Jr, Ceram. Eng. Sci. Proc. 12, 1643 (1991).Google Scholar
7Schwarz, R. B., Srinivasan, S. R., Petrovic, J. J., and Maggiore, C. J., Mater. Sci. Eng. A155, 75 (1992).CrossRefGoogle Scholar
8Kumar, K. S. and Mannan, S. K., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C.T., Taub, A.I., Stoloff, N.S., and Koch, C.C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 415.Google Scholar
9Kajuch, J., Rigney, J. D., and Lewandowski, J. J., Mater. Sci. Eng. A155, 59 (1992).CrossRefGoogle Scholar
10Kajuch, J., Short, J., Liu, C., and Lewandowski, J. J., Scripta Metall. et Mater, (unpublished research).Google Scholar
11Kajuch, J., Short, J., Liu, C., and Lewandowski, J.J., in High Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Whittenberger, J. D., Darolia, R., and Yoo, M. H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993).Google Scholar
12Bhaduri, S.B., Scripta Metall. et Mater. 27, 1277 (1992).CrossRefGoogle Scholar
13Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).Google Scholar
14Floro, J.A., J. Vac. Sci. Technol. A4, 631 (1986).Google Scholar
15Wickersham, C.E. Jr, and Poole, J.E., J. Vac. Sci. Technol. A6, 1699 (1988).Google Scholar
16Clevenger, L. A., Thompson, C. V., and Tu, K. N., J. Appl. Phys. 67, 2894 (1990).Google Scholar
17Ma, E., Thompson, C.V., Clevenger, L.A., and Tu, K.N., Appl. Phys. Lett. 57, 1282 (1990).Google Scholar
18Bordeaux, F. and Yavari, A. R., J. Mater. Res. 5, 1656 (1990).CrossRefGoogle Scholar