Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T03:02:48.908Z Has data issue: false hasContentIssue false

Mechanism of liquid-phase epitaxy growth of NdBa2Cu3O7−xfilm from low-peritectic-temperature YBa2Cu3O7−xseed film

Published online by Cambridge University Press:  31 January 2011

D. X. Huang*
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
X. Yao
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
K. Nomura
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
Y. Wu
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
Y. Nakamura
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
T. Izumi
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
*
a)Address all correspondence to this author.Present address: Materials research Science and Engineering Center and Department of Chemistry, University of Houston, Houston, TX 77204-500.[email protected][email protected]
Get access

Abstract

NdBa2Cu3O7-x (NdBCO) superconducting films were successfully grown on MgO substrates by liquid-phase epitaxy (LPE) using YBa2Cu3O7-x (YBCO) seed films which have lower peritectic temperatures. Microstructural characterizations using optical and electron microscopes revealed that most of the seed grains decomposed at the high processing temperature and dissolved when they touched the solution. The NdBCO grains were formed first by the quasi-homoepitaxial growth of NdBCO units on the few surviving YBCO seed grains and then grew pendently to cover the large bare surface areas of the MgO substrates quickly by lateral overgrowth. A micrometer-thick melt layer was entrapped between the film and the substrate. Through the few links provided by the surviving seed grains, a stable film/substrate orientation relationship could still be maintained. A semiquantitative analysis was done for the lateral overgrowth process, and two different lateral overgrowth stages were observed with about 50 times difference in the lateral overgrowth rate. Then, a semiquantitative understanding for the entire YBCO-seeded NdBCO LPE growth process was finally reached.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Zhokhov, A.A. and Emel'chenko, G.A., J. Cryst. Growth 129, 786 (1993).CrossRefGoogle Scholar
2Yamada, Y. and Shiohara, Y., Physica C 217, 182 (1993).CrossRefGoogle Scholar
3Takagi, A., Wen, J.G., Hirabayashi, I., and Mitsutani, U., J. Cryst. Growth 193, 71 (1998).CrossRefGoogle Scholar
4Scheel, H.J., Klemenz, C., Reinhart, F.K., Lang, H.P., and Gunthrodt, H.J., Appl. Phys. Lett. 65, 901 (1994).CrossRefGoogle Scholar
5Klemenz, C. and Scheel, H.J., Physica C 265, 126 (1996).CrossRefGoogle Scholar
6Yoshida, M., Nakamoto, T., Kitamura, T., Hyun, O.B., Hirabayashi, I., and Tanaka, S., Appl. Phys. Lett. 65, 1714 (1994).CrossRefGoogle Scholar
7Ishida, Y., Kimura, T., Kakimoto, K., Yamada, Y., Nakagawa, Z., Shiohara, Y., and Sawaoka, A.B., Physica C 292, 264 (1997).CrossRefGoogle Scholar
8Belt, B.F., Ings, J., and Diercks, G., Appl. Phys. Lett. 56, 1805 (1990).CrossRefGoogle Scholar
9Dubs, C., Fisher, K., and Gornert, P., J. Cryst. Growth 123, 611 (1992).CrossRefGoogle Scholar
10Klemenz, C. and Scheel, H.J., J. Cryst. Growth 129, 421 (1993).CrossRefGoogle Scholar
11Kakimoto, K., Ishida, Y., Kimura, T., and Shiohara, Y., Adv. Super-cond. 10, 1037 (1998).Google Scholar
12Kawashima, J., Yamada, Y., and Hirabayashi, I., Physica C 306, 114 (1998).CrossRefGoogle Scholar
13Zama, H., Miyakoshi, M., Yamamoto, H., and Morishima, T., Jpn. J. Appl. Phys. 38, L1225 (1999).CrossRefGoogle Scholar
14Kakimoto, K., Sugawara, Y., Izimi, T., and Shiohara, Y., Physica C 334, 249 (2000).CrossRefGoogle Scholar
15Nomura, K., Hoshi, S., Nakamura, Y., Izumi, T., and Shiohara, Y., J. Mater. Res. 16, (2001, in press).Google Scholar
16Izumi, T., Kakimoto, K., Nomura, K., and Shiohara, Y., J. Cryst. Growth 219, 228 (2000).CrossRefGoogle Scholar
17Nomura, K., Hoshi, S., Yao, X., Kakimoto, K., Nakamura, Y., Izumi, T., and Shiohara, Y., J. Mater. Res. 16, 979 (2001).CrossRefGoogle Scholar
18Yao, X., Izumi, T., Nakamura, Y., Izumi, T., and Shiohara, Y., J. Cryst. Growth 229, 374 (2001).CrossRefGoogle Scholar
19Yao, X., Izumi, T., Hobara, N., Nakamura, Y., Izumi, T., and Shiohara, Y., Jpn. J. Appl. Phys. Lett. 40(3B), 266 (2001).CrossRefGoogle Scholar
20Izumi, T., Yao, X., Nomura, K., Kakimoto, K., Egami, M., Hayashi, A., and Shiohara, Y., Physica C 337, 7 (2000).CrossRefGoogle Scholar
21Zytkiewicz, Z.R., Cryst. Res. Technol. 34, 573 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
22Krauns, Ch., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B 96, 207 (1994).CrossRefGoogle Scholar
23Goodilin, E., Kambara, M., Umeda, T., and Shiohara, Y., Physica C 289, 37 (1997).CrossRefGoogle Scholar
24Nomura, K., Hoshi, S., Goodilin, E.A., Yao, X., Izumi, T., and Shiohara, Y., in Advances in Superconductivity XI, edited by Koshizuka, N. and Tajima, S. (Springer-Verlag, Tokyo, Japan, 1999), p. 753.CrossRefGoogle Scholar