Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T13:07:32.442Z Has data issue: false hasContentIssue false

Mechanical properties of blended single-wall carbon nanotube composites

Published online by Cambridge University Press:  31 January 2011

D. Penumadu
Affiliation:
Civil and Environmental Engineering Department, University of Tennessee, Knoxville, Tennessee 37996
A. Dutta
Affiliation:
Civil and Environmental Engineering Department, University of Tennessee, Knoxville, Tennessee 37996
G. M. Pharr
Affiliation:
Materials Science and Engineering Department, University of Tennessee, Knoxville, Tennessee 37996
B. Files
Affiliation:
ES4-Materials and Processes Branch, NASA/Johnson Space Center, Houston, Texas 77058
Get access

Abstract

The improvement in mechanical properties of blended nanocomposites prepared using a low-viscosity, liquid epoxy resin and purified single-wall carbon nanotubes (SWCNTs) was evaluated. The macroscopic tensile stress–strain behavior for hybrid materials made with varying amounts of SWCNT was determined and showed little improvement in the breaking tensile strength. The corresponding variations in modulus and hardness were obtained using nanoindentation considering time effects and showed quantifiable but modest improvements. The small changes in the observed stiffness and breaking strength of carbon nanotube composites is due to the formation of bundles and their curvy morphology.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E., Nature 318, 162 (1985).CrossRefGoogle Scholar
Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).CrossRefGoogle Scholar
Bethune, D.S., Kiang, C.H., Devries, M.S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363, 605 (1993).Google Scholar
W.A. de Heer, Science 270, 1179 (1995).CrossRefGoogle Scholar
Dai, H., Wong, E.W., and Liber, C.M., Science 272, 523 (1996).CrossRefGoogle Scholar
Collins, P.G. and Avouris, P., Scientific American 283(6), 62 (2000).CrossRefGoogle Scholar
Lourie, O., Wagner, H.D., Zhang, Y., and Iijima, S., Advanced Material 11, 931 (1999).3.0.CO;2-X>CrossRefGoogle Scholar
Thostenson, E.T., Ren, Z., and Chou, T.W., Comp. Sci. Technol. 61, 1899 (2001).Google Scholar
Yu, M.F., Lourie, O., Dyer, M., Moloni, K., and Kelly, T., Science 287, 637 (2000).Google Scholar
Yu, M.F., Flies, B.S., Arepalli, S., and Ruoff, R.S., Phys. Rev. Lett. 84, 5552 (2000).CrossRefGoogle Scholar
Xie, S., Li, W., Pan, Z., Chang, B., and Sun, L., J. Phys. Chem. Solids 61, 1153 (2000).CrossRefGoogle Scholar
Cornwell, C.F. and Wille, L.T., Solid State Commun. 101, 555 (1997).Google Scholar
Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem Phys. Lett. 243, 49 (1995).Google Scholar
Sandler, J., Shaffer, M.S.P., Prasse, T., Bauhofer, W., Schulte, K., and Windle, A.H., Polymer 40, 5967 (1999).CrossRefGoogle Scholar
Hay, J.L. and Pharr, G.M., ASM Handbook 8 (ASM International, OH, 2000) p. 232.Google Scholar
Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
Mamedov, A.A., Kotov, N.A., Prato, M., Guldi, D.M., Wicksted, J.P., and Hirsch, A., Nature Materials 1, 190 (2002).CrossRefGoogle Scholar
Schadler, L.S., Giannaris, S.C., and Ajayan, P.M., Appl. Phys. Lett. 73, 3842 (1998).CrossRefGoogle Scholar
Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., and Chou, T.W., J. Appl. Phys. 91, 6034 (2002).Google Scholar
Ajayan, P.M., Schadler, L.S., Giannaris, C., and Rubio, A., Adv. Mater. 12, 750 (2000).Google Scholar
Hadjiev, V.G., Lliev, M.N., Arepalli, S., Nikolaev, P., and Files, B.S., Appl. Phys. Lett. 78(21), 1 (2001).Google Scholar