Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T04:23:09.540Z Has data issue: false hasContentIssue false

Mechanical properties and microstructures of metal/ceramic microlaminates: Part II. A Mo/Al2O3 system

Published online by Cambridge University Press:  31 January 2011

T.C. Chou
Affiliation:
Lockheed Missiles and Space Company, Inc., Research and Development Division, O/93-10, B/204, Palo Alto, California 94304
T.G. Nieh
Affiliation:
Lockheed Missiles and Space Company, Inc., Research and Development Division, O/93-10, B/204, Palo Alto, California 94304
S.D. McAdams
Affiliation:
Department of Materials Science, Rice University, P.O. Box 1892, Houston, Texas 77251
G.M. Pharr
Affiliation:
Department of Materials Science, Rice University, P.O. Box 1892, Houston, Texas 77251
W.C. Oliver
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6116
Get access

Abstract

Synthetic multilayers consisting of periodic layers of the refractory metal Mo and the oxide ceramic Al2O3 have been produced by alternating d.c. and r.f. reactive sputter deposition. Microlaminates with four different modulation wavelength—5, 20, 30, and 100 nm—were investigated in this study. The compositions, periodicities, and microstructures of the microlaminates were characterized by Auger electron spectroscopy, low-angle x-ray diffraction, and transmission electron microscopy, including high resolution lattice imaging and microdiffraction. Transmission electron microscopy from the microlaminates indicated that the as-deposited Mo layers are polycrystalline, while the as-deposited Al2O3 layers are primarily amorphous. The Mo and Al2O3 layers are thermally compatible at 800 °C for 6 h, showing no evidence of atomic interdiffusion between the layers. The mechanical properties of the microlaminates, as well as those of monolithic films of Mo and Al2O3 (i.e., the baseline materials), were investigated using nanoindentation methods. A higher than expected modulus and hardness were observed for the microlaminate with the longest wavelength (100 nm); otherwise the mechanical properties are explainable by a rule-of-mixtures. The enhanced mechanical properties of the 100 nm microlaminate may be attributed to crystallization of the amorphous Al2O3 layers and the evolution of a structural texture within this phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schuller, I. K., Fartash, A., and Grimsditch, M., Elastic Anomalies in Superlattices, 33-37, Interfaces part II, MRS Bulletin, October 1990.CrossRefGoogle Scholar
2McWhan, D. B., Synthetic Modulated Structures, edited by Chang, L. L. and Giesser, B.C. (Academic Press, New York, 1985), p. 43.CrossRefGoogle Scholar
3Sato, N., J. Appl. Phys. 59, 2514 (1986).CrossRefGoogle Scholar
4Falco, C. M. and Schuller, I. K., Synthetic Modulated Structures (Academic Press, New York, 1985), p. 339.CrossRefGoogle Scholar
5Barbee, T. W., Proc. Soc. Photo-opt. Instrum. Eng. 563, 2 (1985).Google Scholar
6Spiller, E., AIP Conf. Proc. 75, 12 (1981).Google Scholar
7Tsakalakos, T. and Hilliard, J.E., J. Appl. Phys. 54, 734 (1983).CrossRefGoogle Scholar
8Yang, W. M. C., Tsakalakos, T., and Hilliard, J. E., J. Appl. Phys. 48, 876 (1977).CrossRefGoogle Scholar
9Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. B., and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).CrossRefGoogle Scholar
10Schuller, I. K. and Grimsditch, M., J. Vac. Sci. Technol. B4, 1444 (1986).Google Scholar
11Fartash, A., Fullerton, E. E., Schuller, I. K., Bobbin, S.E., Wagner, J.W., Cammarata, R. C., Kumar, S., and Grimsditch, M., Phys. Rev. B 44, 13760 (1991).CrossRefGoogle Scholar
12Clemens, B. and Eesley, G., Phys. Rev. Lett. 61, 2356 (1988).CrossRefGoogle Scholar
13Khan, R., Chun, C.S.L., Pelcher, G.P., Grimsditch, M., Kueny, A., Falco, C. M., and Schuller, I. K., Phys. Rev. B 27, 7186 (1983).CrossRefGoogle Scholar
14Doerner, M. F., Ph.D. Dissertation (Stanford University, 1987).Google Scholar
15Helmersson, U., Todorova, S., Barnett, S. A., Sundgren, J-E., Markert, L. C., and Greene, J. E., J. Appl. Phys. 62, 481 (1987).CrossRefGoogle Scholar
16Cammarata, R. C., Scripta Metall. 20, 479 (1986).CrossRefGoogle Scholar
17Baumann, T., Pethica, J. B., Grimsditch, M., and Schuller, I. K., in Interfaces, Superlattices, and Thin Films, edited by Dow, J. D. and Schuller, I. K. (Mater. Res. Soc. Symp. Proc. 77, Pittsburgh, PA, 1987), p. 527.Google Scholar
18Baker, S. P., Jankowski, A. F., Hong, S., and Nix, W. C., Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M. F., Oliver, W. C., Pharr, G. M., and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), p. 289.Google Scholar
19Davis, B. M., Seidman, D.N., Moreau, A., Ketterson, J.B., Mattson, J., and Grimsditch, M., Phys. Rev. B 43, 9304 (1991).Google Scholar
20Chou, T. C., Nieh, T. G., Tsui, T. Y., Pharr, G. M., and Oliver, W. C., J. Mater. Res. 7, 2765 (1992).Google Scholar
21McAdams, S.D., M.S. Thesis (Rice University, 1991).Google Scholar
22Chou, T. C., Adamson, D., Mardinly, J., and Nieh, T. G., Thin Solid Films 205, 131 (1991).CrossRefGoogle Scholar
23Chou, T. C. and Nieh, T. G., J. Am. Ceram. Soc. 74, 2270 (1991).Google Scholar
24Petford-Long, A. K., Stearns, M. B., Chang, C. H., Nutt, S. R., Stearns, D. G., Ceglio, N.M., and Hawryluk, A.M., J. Appl. Phys. 61, 1422 (1987).CrossRefGoogle Scholar
25Sheppard, L.M., Ceram. Bull. 70, 1467 (1991).Google Scholar
26Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
27Stone, D., LaFontaine, W. R., Alexopoulos, P., Wu, T-W., and Li, C-Y., J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
28Guivarc'h, A., Auvray, P., Cun, L. Le, Boulet, J.P., Pelous, G., and Martinez, A., J. Appl. Phys. 49, 233 (1978).Google Scholar
29Nava, F., Majni, G., Cantoni, P., Pignatel, G., Ferla, G., Cappelletti, P., and Mori, F., Thin Solid Films 94, 59 (1982).CrossRefGoogle Scholar
30Suzuki, S., Ohkubo, Y., Matsuoka, F., and Itoh, T., Appl. Phys. Lett. 42, 797 (1983).Google Scholar
31Oliver, W. C. and McHargue, C.J., Thin Solid Films 161, 117 (1988).CrossRefGoogle Scholar
32Chou, T. C. and Nieh, T. G., Thin Solid Films (in press).Google Scholar
33Han, Y.H., Li, H., Wong, T.Y., and Bradt, R.C ., J. Am. Ceram. Soc. 74, 3129 (1991).Google Scholar
34Brooks, C.A., O'Neill, J.B., and Redfern, B.A.W., Proc. R. Soc. London A 322, 73 (1971).Google Scholar
35Lin, T., Alani, R., and Lambeth, D. N., J. Magnetism and Magnetica Mat. 78, 213 (1989).Google Scholar