Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T17:15:19.475Z Has data issue: false hasContentIssue false

Mechanical behavior of individual WS2 nanotubes

Published online by Cambridge University Press:  03 March 2011

I. Kaplan-Ashiri
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100 Israel
S.R. Cohen
Affiliation:
Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
K. Gartsman
Affiliation:
Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
R. Rosentsveig
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100 Israel
G. Seifert
Affiliation:
Institut fur Physikalische Chemie, Technical University, Dresden, 01062 Germany
R. Tenne*
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100 Israel
*
a)This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html
Get access

Abstract

The Young's modulus of WS2 nanotubes is an important property for various applications. Measurements of the mechanical properties of individual nanotubes are challenged by their small size. In the current work, atomic force microscopy was used to determine the Young's modulus of an individual multiwall WS2 nanotube, which was mounted on a silicon cantilever. The buckling force was measured by pushing the nanotube against a mica surface. The average Young's modulus of an individual WS2 nanotube, which was calculated by using Euler's equation, was found to be 171 GPa. First-principle calculations of the Young's modulus of MoS2 single-wall nanotubes using density-functional–based tight-binding method resulted in a value (230 GPa) that is close to that of the bulk material. Furthermore, the diameter dependence of the Young's modulus in both zigzag and armchair configuration was studied and was found to approach the bulk value for nanotubes with few-nanometer diameters. Similar behavior is expected for WS2 nanotubes. The mechanical behavior of the WS2 nanotubes as atomic force microscope imaging tips gave further support for the measured Young's modulus.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tenne, R., Margulis, L., Genut, M. and Hodes, G.: Nature 360 444 (1992).CrossRefGoogle Scholar
2Rao, C.N.R. and Nath, M.: Dalton Trans. 1 1 (2003).CrossRefGoogle Scholar
3Rosentsveig, R., Margolin, A., Feldman, Y., Popovitz-Biro, R. and Tenne, R.: Chem. Mater. 14 471 (2002).CrossRefGoogle Scholar
4Seifert, G., Kohler, T. and Tenne, R.: J. Phys. Chem. B 106 2497 (2002).CrossRefGoogle Scholar
5Zhu, Y.Q., Sekine, T., Brigatti, K.S., Firth, S., Tenne, R., Rosentsveig, R., Kroto, H.W. and Walton, D.R.M.: J. Am. Chem. Soc. 125 1329 (2003).CrossRefGoogle Scholar
6Rapoport, L., Bilik, Y., Feldman, Y., Homoyonfer, M., Cohen, S.R. and Tenne, R.: Nature 387 791 (1997).CrossRefGoogle Scholar
7Rapoport, L., Fleischer, N.: and R. Tenne: Adv. Mater. 15 651 (2003).Google Scholar
8Yakobson, B.I. and Avouris, P.: Topics Appl. Phys. 80 287 (2001).CrossRefGoogle Scholar
9Kudin, K.N., Scuseria, G.E. and Yakobson, B.I.: Phys. Rev. B 64 235406 (2001).CrossRefGoogle Scholar
10Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S.: Science 287 637 (2000).CrossRefGoogle Scholar
11Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M.: Nature 381 678 (1996).CrossRefGoogle Scholar
12Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O.: Mater. Sci. Eng. A A334 173 (2002).CrossRefGoogle Scholar
13Kis, A., Mihailovic, D., Remskar, M., Mrzel, A., Jesih, A., Piwonski, I., Kulik, A.J., Benoit, W. and Forro, L.: Adv. Mater. 15 733 (2003).CrossRefGoogle Scholar
14Feldman, J.L.: J. Phys. Chem. Solids 37 1141 (1976).CrossRefGoogle Scholar
15Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R.E.: Nature 384 147 (1996).CrossRefGoogle Scholar
16Wong, S.S., Joselevich, E., Woolley, A.D., Cheung, C.L. and Lieber, C.M.: Nature 394 52 (1998).CrossRefGoogle Scholar
17Cheung, C.L, Hafner, J.H. and Lieber, C.M.: Proc. Natl. Academy Sci. 97 3809 (2000).CrossRefGoogle Scholar
18Nishijima, H., Akita, S. and Nakayama, Y.: Jpn. J. Appl. Phys. 38 7247 (1999).CrossRefGoogle Scholar
19Cleveland, J.P., Manne, S., Bocek, D. and Hansman, P.K.: Rev. Sci. Instrum. 64 403 (1993).CrossRefGoogle Scholar
20Feynman, R., Leyton, R. and Sands, M.The Feynman Lectures in Physics, Vol. 2 (Addison-Wesley, Redwood City, CA, 1964).Google Scholar
21Porezag, D., Frauenheim, Th., Köhler, Th., Seifert, G. and Kaschner, R.: Phys. Rev. B 51 12947 (1995).CrossRefGoogle Scholar
22Seifert, G., Porezag, D. and Frauenheim, Th.: Int. J. Quant. Chem. 58 185 (1996).3.0.CO;2-U>CrossRefGoogle Scholar
23Seifert, G., Terrones, H., Terrones, M., Jungnickel, G. and Frauenheim, Th.: Phys. Rev. Lett. 85 146 (2000).CrossRefGoogle Scholar
24Hernandez, E., Goze, C., Bernier, P. and Rubio, A.: Phys. Rev. Lett. 80 4502 (1998).CrossRefGoogle Scholar
25Feldman, J.L.: J. Phys. Chem. Solids 42 857 (1981).Google Scholar
26Rothschild, A., Cohen, S.R. and Tenne, R.: Appl. Phys. Lett. 75 4025 (1999).CrossRefGoogle Scholar
27Wong, E.W., Sheehan, P.E. and Lieber, C.M.: Science 277 1971 (1997).CrossRefGoogle Scholar
28Israelachvili, J.Intermolecular & Surface Forces, 2nd ed. (Academic Press, London, U.K., 1991).Google Scholar