Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T04:55:12.839Z Has data issue: false hasContentIssue false

Mechanical assessment of ultrafine-grained nickel by microcompression experiment and finite element simulation

Published online by Cambridge University Press:  20 September 2011

Ruth Schwaiger*
Affiliation:
Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), 76021 Karlsruhe, Germany
Matthias Weber
Affiliation:
Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), 76021 Karlsruhe, Germany
Benedikt Moser
Affiliation:
EMPA Thun, Swiss Federal Institute for Materials Testing and Research, Laboratory for Materials Technology, 3602 Thun, Switzerland; and Suisse Technology Partners Ltd., 8212 Neuhausen, Switzerland
Peter Gumbsch
Affiliation:
Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), 76021 Karlsruhe, Germany; and Fraunhofer Institute for Mechanics of Materials IWM, 79108 Freiburg, Germany
Oliver Kraft
Affiliation:
Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), 76021 Karlsruhe, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Over the past two decades, nanoindentation has been the most versatile method for mechanical testing at small length scales. Because of large strain gradients, it does not allow for a straightforward identification of material parameters such as yield and tensile strength, though. This represents a major drawback and has led to the development of alternative microscale testing techniques with microcompression as one of the most popular ones today. In this research, the influence of the realistic sample configuration and unavoidable variations in the experimental conditions is studied systematically by combing in-situ microcompression experiments on ultrafine-grained nickel and finite element simulations. It will be demonstrated that neither qualitative let alone quantitative analyses are as straightforward as they may appear, which diminishes the apparent advantages of microcompression testing.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986 (2004).CrossRefGoogle ScholarPubMed
2.Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654 (2011).CrossRefGoogle Scholar
3.Nix, W.D., Greer, J.R., Feng, G., and Lilleodden, E.T.: Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515(6), 3152 (2007).CrossRefGoogle Scholar
4.Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron au columns. Philos. Mag. 86(33), 5567 (2006).CrossRefGoogle Scholar
5.Jang, D. and Greer, J.R.: Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr. Mater. 64(1), 77 (2011).CrossRefGoogle Scholar
6.Kraft, O., Gruber, P.A., Mönig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).CrossRefGoogle Scholar
7.Parthasarathy, T.A., Rao, S.I., Dimiduk, D.M., Uchic, M.D., and Trinkle, D.R.: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56(4), 313 (2007).CrossRefGoogle Scholar
8.Senger, J., Weygand, D., Gumbsch, P., and Kraft, O.: Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading. Scr. Mater. 58(7), 587 (2008).CrossRefGoogle Scholar
9.Motz, C., Weygand, D., Senger, J., and Gumbsch, P.: Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 57(6), 1744 (2009).CrossRefGoogle Scholar
10.Senger, J., Weygand, D., Motz, C., Gumbsch, P., and Kraft, O.: Aspect ratio and stochastic effects in the plasticity of uniformly loaded micrometer-sized specimens. Acta Mater. 59(8), 2937 (2011).CrossRefGoogle Scholar
11.Shan, Z.W., Mishra, R.K., Syed Asif, S.A., Warren, O.L., and Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7(2), 115 (2008).CrossRefGoogle ScholarPubMed
12.Kiener, D., Motz, C., and Dehm, G.: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505(1-2), 79 (2009).CrossRefGoogle Scholar
13.Zhang, H., Schuster, B.E., Wei, Q., and Ramesh, K.T.: The design of accurate micro-compression experiments. Scr. Mater. 54(2), 181 (2006).CrossRefGoogle Scholar
14.Koch, C.C.: Ductility in nanostructured and ultra fine-grained materials: Recent evidence for optimism. J. Metastable Nanocryst Mater 18, 9 (2003).Google Scholar
15.Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C.: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17(1), 5 (2002).CrossRefGoogle Scholar
16.Wang, Y., Chen, M., Zhou, F., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).CrossRefGoogle Scholar
17.Lu, L., Wang, L.B., Ding, B.Z., and Lu, K.: High-tensile ductility in nanocrystalline copper. J. Mater. Res. 15(2), 270 (2000).CrossRefGoogle Scholar
18.Youssef, K.M., Scattergood, R.O., Murty, K.L., Horton, J.A., and Koch, C.C.: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 (2005).CrossRefGoogle Scholar
19.Ma, E.: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49(7), 663 (2003).CrossRefGoogle Scholar
20.Kurmanaeva, L., Ivanisenko, J., Markmann, J., Yang, K., Fecht, H-J., and Weissmüller, J.: Work hardening and inherent plastic instability of nanocrystalline metals. Phys. Status Solidi RRL 4(5–6), 130 (2010).CrossRefGoogle Scholar
21.Wei, Q., Pan, Z.L., Wu, X.L., Schuster, B.E., Kecskes, L.J., and Valiev, R.Z.: Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion. Acta Mater. 59, 2423 (2011).CrossRefGoogle Scholar
22.Kiener, D., Motz, C., Rester, M., Jenko, M., and Dehm, G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459(1–2), 262 (2007).CrossRefGoogle Scholar
23.Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159 (2003).CrossRefGoogle Scholar
24.Rabe, R., Breguet, J.M., Schwaller, P., Stauss, S., Haug, F.J., Patscheider, J., and Michler, J.: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469, 470, 206 (2004).CrossRefGoogle Scholar
25.Moser, B., Wasmer, K., Barbieri, L., and Michler, J.: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22(4), 1004 (2007).CrossRefGoogle Scholar
26.Tabor, D.: Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
27.Lai, Y.H., Lee, C.J., Cheng, Y.T., Chou, H.S., Chen, H.M., Du, X.H., Chang, C.I., Huang, J.C., Jian, S.R., Jang, J.S.C., and Nieh, T.G.: Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr. Mater. 58(10), 890 (2008).CrossRefGoogle Scholar
28.Dao, M., Lu, L., Asaro, R.J., Hosson, J.T.M.D., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041 (2007).CrossRefGoogle Scholar
29.Wang, Y.M. and Ma, E.: Strain hardening and strain rate sensitivity of ultrafine-grained metals. J. Metastable Nanocryst. Mater. 17, 55 (2003).Google Scholar
30.Jia, D., Wang, Y.M., Ramesh, K.T., Ma, E., Zhu, Y.T., and Valiev, R.Z.: Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl. Phys. Lett. 79(5), 611 (2001).CrossRefGoogle Scholar
31.Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103 (2000).CrossRefGoogle Scholar
32.Raabe, D., Ma, D., and Roters, F.: Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Mater. 55(13), 4567 (2007).CrossRefGoogle Scholar
33.Shade, P.A., Wheeler, R., Choi, Y.S., Uchic, M.D., Dimiduk, D.M., and Fraser, H.L.: A combined experimental and simulation study to examine lateral constraint effects on microcompression of single-slip oriented single crystals. Acta Mater. 57(15), 4580 (2009).CrossRefGoogle Scholar
34.Choi, Y.S., Uchic, M.D., Parthasarathy, T.A., and Dimiduk, D.M.: Numerical study on microcompression tests of anisotropic single crystals. Scr. Mater. 57(9), 849 (2007).CrossRefGoogle Scholar