Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T05:58:35.719Z Has data issue: false hasContentIssue false

Measurement of surface topography and area-specific nanohardness in the scanning force microscope

Published online by Cambridge University Press:  03 March 2011

D. Scholl
Affiliation:
Ford Motor Company, MD3028/SRL, P.O. Box 2053, Dearborn, Michigan 48121-2053
M.P. Everson
Affiliation:
Ford Motor Company, MD3028/SRL, P.O. Box 2053, Dearborn, Michigan 48121-2053
R.C. Jaklevic
Affiliation:
Ford Motor Company, MD3028/SRL, P.O. Box 2053, Dearborn, Michigan 48121-2053
Get access

Abstract

A Scanning Force Microscope (SFM) is employed to indent and image surfaces with sub-micron resolution. The SFM image shows the area and depth of each indentation as well as its location with respect to nearby topographic surface features. The image also reveals the surface roughness, which can set a lower limit on useful nanoindentation size. A cross section of a nitrided steel surface is measured to illustrate the method. The use of the SFM with separate tip-cantilever structures for indenting and imaging has significant advantages over other nanohardness methods for the study of samples with lateral inhomogeneities.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
2Fabes, B. D., Oliver, W. C., McKee, R.A., and Walker, F. J., J. Mater. Res. 7, 3056 (1992).CrossRefGoogle Scholar
3Jayaraman, S., Oliver, W., Hahn, G. T., Bastias, P., and Rubin, C., Scripta Metall. et Mater. 29, 1609 (1993).CrossRefGoogle Scholar
4Jayaraman, S., Oliver, W., Hahn, G., Bastias, P., and Rubin, C., Scripta Metall. et Mater. 29, 1615 (1993).CrossRefGoogle Scholar
5Daniel, A. M., Smith, S. T., and Lewis, M. H., Rev. Sci. Instrum. 65, 632 (1994).CrossRefGoogle Scholar
6Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W. W., J. Mater. Res. 8, 1291 (1993).CrossRefGoogle Scholar
7Ma, Q. and Clarke, D. R., J. Mater. Res. 10, 853 (1995).CrossRefGoogle Scholar
8Wu, T. W., J. Mater. Res. 6, 407 (1991).CrossRefGoogle Scholar
9Wu, T. W. and Lee, C-K., J. Mater. Res. 9, 797 (1994).CrossRefGoogle Scholar
10Wu, T. W. and Lee, C-K., J. Mater. Res. 9, 805 (1994).CrossRefGoogle Scholar
11Burnham, N. A. and Colton, R. J., J. Vac. Sci. Technol. A 7, 2906 (1989).CrossRefGoogle Scholar
12Hues, S. M., Colton, R. J., Meyer, E., and Güntherodt, H-J., MRS Bulletin, January 1993, p. 41.CrossRefGoogle Scholar
13Persch, G., Born, Ch., Engelmann, H., Koehler, K., and Utesch, B., Scanning 15, 283 (1993).CrossRefGoogle Scholar
14Bhushan, B. and Koinkar, V. N., Appl. Phys. Lett. 64, 1653 (1994).CrossRefGoogle Scholar
15Scholl, D., Clawing, E. M., Willermet, P. A., and White, S.C., SAE Technical Paper 941985 (1994).Google Scholar
16Hues, S. M., Draper, C. F., Lee, K. P., and Colton, R. J., Rev. Sci. Instrum. 65, 1561 (1994).CrossRefGoogle Scholar
17Scholl, D., Everson, M. P., and Jaklevic, R. C., Rev. Sci. Instrum. 65, 2255 (1994).CrossRefGoogle Scholar