Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T14:39:13.472Z Has data issue: false hasContentIssue false

Measurement of crystalline strain and orientation in diamond films grown by chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

E. D. Specht
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6117
R. E. Clausing
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6117
L. Heatherly
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6117
Get access

Abstract

We have used x-ray diffraction to characterize diamond films grown in three characteristic morphologies by chemical vapor deposition. Each morphology has a fiber texture about the growth direction; we report the crystal axis aligned in this direction for each morphology. In all cases the average lattice constant agrees with that of bulk diamond; we report the range of strain in each sample.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Deryagin, B.V., Spitsyn, B.V., Biulov, L. L., Klochkov, A. A., Gorodetskii, A. E., and Smol'yaninov, A.V., Sov. Phys. Dokl. 21, 676 (1976).Google Scholar
2Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., J. Mater. Sci. 17, 3106 (1982).CrossRefGoogle Scholar
3Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).CrossRefGoogle Scholar
4Matsumoto, S. and Matsui, Y., J. Mater. Sci. 18, 1785 (1983).CrossRefGoogle Scholar
5Sawabe, A. and Inuzuka, T., Appl. Phys. Lett. 46, 146 (1985).CrossRefGoogle Scholar
6Matsumoto, S., J. Mater. Sci. Lett. 4, 600 (1985).CrossRefGoogle Scholar
7Mitsuda, Y., Kojima, Y., Yoshida, T., and Adashi, K., J. Mater. Sci. 22, 1557 (1987).CrossRefGoogle Scholar
8Kawarada, H., Mar, K. S., and Hiraka, A., Jpn. J. Appl. Phys. 26, L1032 (1987).CrossRefGoogle Scholar
9Kobashi, K., Nishimura, K., Kawate, Y., and Hariuchi, T., Phys. Rev. B 38, 4067 (1988).CrossRefGoogle Scholar
10Williams, B.E. and Glass, J.T., J. Mater. Res. 4, 373 (1989).CrossRefGoogle Scholar
11Wild, Ch., Herres, N., Wagner, J., Koidl, P., and Anthony, T. R., Electrochem. Soc. Proc. 89–12, 283 (1989).Google Scholar
12Clausing, R. E., Heatherly, L., More, K. L., and Begun, G. M., Surface and Coatings Tech. 39/40, 199 (1989).CrossRefGoogle Scholar
13Shulz, L. G., J. Appl. Phys. 20, 1030 (1949).CrossRefGoogle Scholar
14Cullity, B.D., Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1978), pp. 284286.Google Scholar
15Barrett, C. S. and Massalski, T. B., Structure of Metals, 3rd rev. ed. (Pergamon, Oxford, 1980), pp. 196197.Google Scholar
16Thermophysical Properties of Matter, edited by Touloukian, Y. S., (IFI/Plenum, New York, 1977), Vol. 13.Google Scholar
17Field, J. E., in The Properties of Diamond, edited by Field, J. E. (London: Academic, 1979), p. 308.Google Scholar
18Blocher, J. M. Jr, J. Vac. Sci. Technol. A11, 680 (1974).CrossRefGoogle Scholar
19Takai, T., Halicicioglu, T., and Tiller, W.A., Surf. Sci. 164, 341 (1985).CrossRefGoogle Scholar
20Narayan, J., J. Appl. Phys. 53, 8607 (1982).CrossRefGoogle Scholar
21Narayan, J., Mater. Lett. 2, 219 (1984).CrossRefGoogle Scholar
22Meakin, D., Stoemenos, J., Miglierate, D., and Economan, N. A., J. Appl. Phys. 61, 5031 (1987).CrossRefGoogle Scholar
23Bisaro, R., Magarino, J., Proust, N., and Zellama, K., J. Appl. Phys. 59, 1167 (1986).CrossRefGoogle Scholar
24Joubert, P., Loisel, B., Chouan, Y., and Haji, L., J. Electrochem. Soc. 134, 247 (1988).Google Scholar