Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:26:42.541Z Has data issue: false hasContentIssue false

Measurement and improvement of the adhesion of copper to polyimide

Published online by Cambridge University Press:  31 January 2011

M. Menezes
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois
I. M. Robertson
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois
H. K. Birnbaum
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois
Get access

Abstract

A contact angle measurement technique has been used to obtain an estimate of the interfacial energy and thermodynamic adhesive strength between copper and polyimide [pyromellitic dyanhydride oxydianalyn (PMDA-ODA) and p-phenylene biphenyltetracarboinide (BPDA-PDA)]. Values of the strength of adhesion from these contact angle measurements are in reasonable agreement with values calculated using the Girifalco–Good–Fowkes nonpolar interfacial adhesion theory. Based on the surface energy it was predicted and experimentally observed that small copper clusters would embed into the polymer matrix if heated under ultrahigh vacuum conditions at temperatures near Tg of the polymer. Controlled embedding of nanometer clusters was utilized to produce a textured interface, where the partially embedded clusters acted as “nanonails” to anchor a metal overlayer to the underlying polyimide substrate. These nanonails greatly increased the bonding between the copper overlayer and the polyimide, as demonstrated by mechanical debonding studies.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.DiNardo, N.J., in Metallized Plastics 1: Fundamental and Applied Aspects, edited by Mittal, K.L. and Susko, J.R. (Plenum Press, New York, 1989), p. 137.CrossRefGoogle Scholar
2.Karas, B.R., Foust, D.F., Dumas, W.V., and Lamby, E.J., in Metallized Plastics 2: Fundamental and Applied Aspects, edited by Mittal, K.L. (Plenum Press, New York, 1991), p. 387.CrossRefGoogle Scholar
3.Salem, J.R., Sequeda, F.O., Duran, J., Lee, W.Y., and Yang, R.M., J. Vac. Sci. Technol. A4, 369 (1986).CrossRefGoogle Scholar
4.Kim, K.S. and Kim, J., J. Eng. Mat. Technol. 110, 266 (1988).CrossRefGoogle Scholar
5.Aravas, N., Kim, K.S., and Loukis, M.J., Mat. Sci. Eng. A107, 159 (1989).CrossRefGoogle Scholar
6.Faupel, F., Yang, C.H., Chen, S.T., and Ho, P.S., J. Appl. Phys. 65, 1917 (1989).CrossRefGoogle Scholar
7.Ho, P.S., Haight, R., White, R.C., Silverman, B.D., and Faupel, F., in Fundamentals of Adhesion, edited by Lee, L-H. (Plenum Press, New York, 1991), p. 383.CrossRefGoogle Scholar
8.Tessier, T.G., Adema, G.M., and Turlik, I., in Proceedings of the 39th Electronic Components Conference (IEEE, New York, 1989) p. 127.CrossRefGoogle Scholar
9.Li, Jian, Seidel, T.E., and Mayer, J.W., MRS Bull. XIX(8), 15 (1994).CrossRefGoogle Scholar
10.Buchwalter, L.P. and Baise, A.I., in Polyimides: Synthesis, Characterization and Applications, edited by Mittal, K.L. (Plenum Press, New York, 1984), Vol. 1, p. 537.CrossRefGoogle Scholar
11.Haight, R., White, R.C., Silverman, B.D., and Ho, P.S., J. Vac. Sci. Technol. A6, 2188 (1988).CrossRefGoogle Scholar
12.White, R.C., Haight, R., Silverman, B.D., and Ho, P.S., Appl Phys. Lett. 51, 481 (1987).CrossRefGoogle Scholar
13.Rossi, A.R., Sande, P.N., Silverman, B.D., and Ho, P.S., Organometallics 6, 580 (1987).CrossRefGoogle Scholar
14.Goldberg, M.J., Clabes, J.G., Viehbeck, A., and Kovac, C.A., J. Vac. Sci. Technol. A6, 991 (1988).CrossRefGoogle Scholar
15.Strunskus, T., Hahn, C., and Frankel, D., J. Vac. Sci. Technol. A9, 1272 (1991).CrossRefGoogle Scholar
16.Bredas, J.L. and Clark, T.C., J. Chem. Phys. 86, 253 (1987).CrossRefGoogle Scholar
17.Pireaux, J.J., Gregoire, C., Vermeersch, M., Thiry, P.A., and Caudano, R., Surf. Sci. 189–190, 903 (1987).CrossRefGoogle Scholar
18.Pireaux, J.J., Gregoire, C., Thiry, P.A., Caudano, R., and Clarke, T.C., J. Vac. Sci. Technol., A—Vac. Surf. Films 5, 598 (1987).CrossRefGoogle Scholar
19.Jeon, N.L. and Nuzzo, R.G., Langmuir 11, 341 (1995).CrossRefGoogle Scholar
20.Buchwalter, L.P., J. Adhesion Sci. and Technol. 4, 697 (1990).CrossRefGoogle Scholar
21.Saraf, R.F., Roldan, J.M., and Derderian, T., IBM J. Res. Dev. 38, 441 (1994).CrossRefGoogle Scholar
22.Lee, K-W. and Viehbeck, A., IBM J. Res. Dev. 38, 457 (1994).CrossRefGoogle Scholar
23.Buchwalter, L.P. and Holloway, K., J. Adhesion Sci. Technol. 12, 95 (1998).CrossRefGoogle Scholar
24.Girifalco, L.A. and Good, R.J., J. Phys. Chem. 61, 904 (1957).CrossRefGoogle Scholar
25.Fowkes, F., J. Phys. Chem. 67, 2538 (1963).CrossRefGoogle Scholar
26.Fowkes, F., J. Adhesion 4, 155 (1972).CrossRefGoogle Scholar
27.Fowkes, F.W., in Physicochemical Aspects of Polymer Surfaces, edited by Mittal, K.L. (Plenum Press, New York, 1983), Vol. 2, p. 583.Google Scholar
28.Smith, T.L. and Kim, C.S., in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D.T., Mita, I., and Yoon, D.Y. (Mater. Res. Soc. Symp. Proc. 227, Pittsburgh, PA, 1991), p. 219.Google Scholar
29.Leu, J., Kang, Y.S., Liou, H.C., and Ho, P.S., in Electronic Packaging Materials Science VII, edited by Børgensen, P., Jensen, K.F., and Pollak, R.A. (Mater. Res. Soc. Symp. Proc. 323, Pittsburgh, PA, 1994), p. 283.Google Scholar
30.Chiu, S.L., Leu, J., and Ho, P.S., J. Appl. Phys. 76, 5136 (1994).CrossRefGoogle Scholar
31.Zuo, M., Takeichi, T., Matsumoto, A., and Tsutsumi, K., Colloid Polym. Sci. 276, 555, (1999).CrossRefGoogle Scholar
32.Menezes, M., Ph.D. Thesis, University of Illinois, Urbana, IL (1997).Google Scholar
33.Peddada, S.R., Ph.D. Thesis, University of Illinois, Urbana, IL (1991).Google Scholar
34.Burrell, M.C., Codella, P.J., Fontana, J.A., Chera, J.J., and McConnell, M.D., J. Vac. Sci. Technol. A7, 55 (1989).CrossRefGoogle Scholar
35.Chou, N.J. and Tang, C.H., J. Vac. Sci. Technol. A2, 751 (1984).CrossRefGoogle Scholar
36.Clabes, J.G., Goldberg, M.J., Viehbeck, A., and Kovac, C.A., J. Vac. Sci. Technol. A6, 985 (1988).CrossRefGoogle Scholar
37.Kwok, D.Y., Gietzelt, T., Grundke, K., Jacobasch, H-J., and Neumann, A.W., Langmuir 13, 2880 (1997).CrossRefGoogle Scholar
38.Tyson, W.R., Can. Metallurgical Q. 14, 307 (1975).CrossRefGoogle Scholar
39.Wu, S., in Polymer Handbook, edited by Brandup, J. and Immergut, E.H. (John Wiley & Sons, New York, 1989), p. VI411.Google Scholar
40.Fowkes, F., Ind. Eng. Chem. 64, 561 (1960).Google Scholar
41.Thelen, E., J. Phys. Chem. A2, 751 (1967).Google Scholar