Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:03:50.108Z Has data issue: false hasContentIssue false

MBE growth of compound semiconductors: Part I. Stochastic modeling

Published online by Cambridge University Press:  31 January 2011

R. Venkatasubramanian
Affiliation:
Department of Electrical and Computer Engineering, University of Nevada–Las Vegas, Las Vegas, Nevada 89154
Get access

Abstract

A stochastic model for the MBE growth kinetic study of compound semiconductors is developed based on the master equation approach, the solid-on-solid restriction, and the quasi-chemical approximation. The developed model is suitable for the zinc blende crystals with 001 as the growth direction. In the modeling, the diamond cubic structure and the two sublattice nature of the zinc blende crystal are taken into account. The stochastic model is extended to compound semiconductor alloys such as GaAlAsSb to make it suitable for the MBE kinetic studies of alloys. Up to four elements with two in each sublattice can be accommodated. The presence of two elements in the same sublattice was taken into account. A procedure for the evaluation of the model parameters based on the available thermodynamic and experimental data is discussed. Advantages and limitations of the stochastic model over the available theoretical models are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tempkin, D. E., Crystallization Processes, edited by Sirota, N. M., Gorski, F. K., and Varikash, V. M. (Consultants Bureau, New York, 1966), p. 15.CrossRefGoogle Scholar
2.Weeks, J. D. and Gilmer, G. H., in Advances in Chem. Phys., edited by Prigogine, I. and Rice, S. A., XLI, 157 (1979).CrossRefGoogle Scholar
3.Krumbhaar, H. M., Phys Rev. 10 (4), 1308 (1974).CrossRefGoogle Scholar
4.Leamy, H. J. and Jackson, K. A., J. Appl. Phys. 42 (5), 2121 (1971).CrossRefGoogle Scholar
5.Leamy, H. J. and Jackson, K. A., J. Cryst. Growth 13/14, 140 (1972).CrossRefGoogle Scholar
6.Saito, Y. and Krumbhaar, H. M., J. Chem. Phys. 70 (3), 1079 (1979).CrossRefGoogle Scholar
7.Foxon, C. T., Boudry, M. R., and Joyce, B. A., Surf. Sci. 44, 69 (1974).CrossRefGoogle Scholar
8.Foxon, C. T. and Joyce, B. A., Surf. Sci. 50, 434 (1975).CrossRefGoogle Scholar
9.Foxon, C. T. and Joyce, B. A., Surf. Sci. 64, 293 (1977).CrossRefGoogle Scholar
10.Arthur, J. R., J. Appl. Phys. 39, 4032 (1968).CrossRefGoogle Scholar
11.Arthur, J. R., Surf. Sci. 43, 449 (1974).CrossRefGoogle Scholar
12.Neave, J. H., Dobson, P. J., and Joyce, B. A., Appl. Phys. Lett. 47, 100 (1985).CrossRefGoogle Scholar
13.Nagata, Seiichi and Tanaka, Tsuneo, J. Appl. Phys. 48 (3), 940 (1977).CrossRefGoogle Scholar
14.Singh, J. and Madhukar, A., J. Vac. Sci. Technol. Bl (2), 385 (1983).Google Scholar
15.Madhukar, A. and Ghaisas, S. V., Appl. Phys. Lett. 47 (3), 247 (1983).CrossRefGoogle Scholar
16.Singh, J. and Bajaj, K. K., Superlattices and Microstructures 2, 185 (1986).CrossRefGoogle Scholar
17.Singh, J. and Bajaj, K. K., Appl. Phys. Lett. 46 (6), 577 (1986).CrossRefGoogle Scholar
18.Clarke, S. and Vvedensky, D. D., Phys. Rev. Lett. 58, 2235 (1987).CrossRefGoogle Scholar
19.Clarke, S. and Vvedensky, D. D., J. Appl. Phys. 63, 2272 (1988).CrossRefGoogle Scholar
20.Vvedensky, D. D. and Clarke, S., Surf. Sci. 225, 373 (1990).CrossRefGoogle Scholar