Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T06:22:22.714Z Has data issue: false hasContentIssue false

The many facets of deformation mechanism mapping and the application to nanostructured materials

Published online by Cambridge University Press:  23 April 2013

Megumi Kawasaki*
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, South Korea; and Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1453
Terence G. Langdon
Affiliation:
Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-14533; and Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Deformation mechanism maps are well established in the field of high temperature creep for materials having conventional coarse grain sizes but they are almost unknown within the field of nanostructured materials. This paper summarizes the background to deformation mechanism mapping, presents simplified examples that may be used to easily construct appropriate maps for any selected condition, demonstrates the potential extension of this approach to other areas such as creep fracture, and then considers the potential limitations associated with using the same approach to predict the deformation mechanisms in true nanostructured materials. Two representative deformation mechanism maps are shown for an ultrafine-grained alloy processed either by equal-channel angular pressing or by high-pressure torsion.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kassner, M.E. and Pérez-Prado, M.T.: Five-power-law creep in single phase metals and alloys. Prog. Mater. Sci. 45, 1 (2000).CrossRefGoogle Scholar
Kassner, M.E.: Fundamentals of Creep in Metals and Alloys, 2nd ed. (Elsevier, Amsterdam, The Netherlands, 2009).Google Scholar
Bird, J.E., Mukherjee, A.K., and Dorn, J.E.: Correlations between high-temperature creep behavior and structure, in Quantitative Relation Between Properties and Microstructure, Brandon, D.G. and Rosen, A., eds. (Israel Universities Press, Jerusalem, Israel, 1969), p. 255.Google Scholar
Langdon, T.G.: Creep at low stresses: an evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms. Metall. Mater. Trans. A 33, 249 (2002).CrossRefGoogle Scholar
Weertman, J. and Weertman, J.R.: Mechanical properties: Strongly temperature dependent, in. Physical Metallurgy, 1st ed., Cahn, R.W., ed. (North-Holland, Amsterdam, The Netherlands, 1965), p. 793.Google Scholar
Weertman, J.: Dislocation climb theory of steady-state creep. Trans. ASM 61, 681 (1968).Google Scholar
Nabarro, F.R.N.: Deformation of crystals by the motion of single ions, in. Report of a Conference on Strength of Solids (The Physical Society, London, UK, 1948), p. 75.Google Scholar
Herring, C.: Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
Ashby, M.F.: First report on deformation-mechanism maps. Acta Metall. 20, 887 (1972).CrossRefGoogle Scholar
Langdon, T.G. and Mohamed, F.A.: A simple method of constructing an Ashby-type deformation mechanism map. J. Mater. Sci. 13, 1282 (1978).CrossRefGoogle Scholar
Coble, R.L.: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
Frost, H.J. and Ashby, M.F.: Deformation-mechanism Maps (Pergamon, Oxford, UK, 1982).Google Scholar
Langdon, T.G.: Recent developments in deformation mechanism maps. Met. Forum 1, 59 (1978).Google Scholar
Mohamed, F.A. and Langdon, T.G.: Deformation mechanism maps based on grain size. Metall. Trans. 5, 2339 (1974).CrossRefGoogle Scholar
Harper, J. and Dorn, J.E.: Viscous creep of aluminum near its melting temperature. Acta Metall. 5, 654 (1957).CrossRefGoogle Scholar
Mohamed, F.A. and Langdon, T.G.: Deformation mechanism maps: Their use in predicting creep behavior. J. Eng. Mater. Technol. 98, 125 (1976).CrossRefGoogle Scholar
Mohamed, F.A. and Langdon, T.G.: Deformation mechanism maps for solid solution alloys. Scr. Metall. 9, 137 (1975).CrossRefGoogle Scholar
Mohamed, F.A. and Langdon, T.G.: Deformation mechanism maps for superplastic materials. Scr. Metall. 10, 759 (1976).CrossRefGoogle Scholar
Langdon, T.G. and Mohamed, F.A.: A new type of deformation mechanism map for high-temperature creep. Mater. Sci. Eng. 32, 103 (1978).CrossRefGoogle Scholar
Wray, P.J.: Strain-rate dependence of the tensile failure of a polycrystalline material at elevated temperatures. J. Appl. Phys. 40, 4018 (1969).CrossRefGoogle Scholar
Ashby, M.F. and Raj, R.: Creep fracture, in. The Mechanics and Physics of Fracture (The Metals Society, London, 1975), p. 148.Google Scholar
Miller, D.A. and Langdon, T.G.: Creep fracture maps for 316 stainless steel. Metall. Trans. A 10, 1635 (1979).CrossRefGoogle Scholar
Langdon, T.G. and Mohamed, F.A.: Deformation mechanism maps for ceramics. J. Mater. Sci. 11, 317 (1976).CrossRefGoogle Scholar
Langdon, T.G. and Mohamed, F.A.: The incorporation of ambipolar diffusion in deformation mechanism maps for ceramics. J. Mater. Sci. 13, 473 (1978).CrossRefGoogle Scholar
Langdon, T.G.: Deformation mechanism maps for applications at high temperatures. Ceram. Int. 6, 11 (1980).CrossRefGoogle Scholar
Gordon, R.S.: Mass transport in the diffusional creep of ionic solids. J. Am. Ceram. Soc. 56, 147 (1973).CrossRefGoogle Scholar
Gordon, R.S. and Hodge, J.D.: Analysis of mass transport in the diffusional creep of polycrystalline MgO-FeO-Fe2O3 solid solutions. J. Mater. Sci. 10, 200 (1975).CrossRefGoogle Scholar
Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar
Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
Kawasaki, M. and Langdon, T.G.: Principles of superplasticity in ultrafine-grained materials. J. Mater. Sci. 42, 1782 (2007).CrossRefGoogle Scholar
Langdon, T.G.: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437 (1994).CrossRefGoogle Scholar
Kawasaki, M., Balasubramanian, N., and Langdon, T.G.: Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. Mater. Sci. Eng., A 528, 6624 (2011).CrossRefGoogle Scholar
Kawasaki, M., Lee, S., and Langdon, T.G.: Constructing a deformation mechanism map for a superplastic Pb-Sn alloy processed by equal-channel angular pressing. Scr Mater. 61, 963 (2009).CrossRefGoogle Scholar
Kawasaki, M., Mendes, A.A., Sordi, V.L., Ferrante, M., and Langdon, T.G.: Achieving superplastic properties in a Pb-Sn eutectic alloy processed by equal-channel angular pressing. J. Mater. Sci. 46, 155 (2011).CrossRefGoogle Scholar
Kawasaki, M., Sklenička, V., and Langdon, T.G.: Creep behavior of metals processed by equal-channel angular pressing. Kovove Mater. 49, 75 (2011).CrossRefGoogle Scholar
Kawasaki, M. and Langdon, T.G.: The significance of grain boundary sliding in the superplastic Zn-22% Al alloy processed by ECAP. J. Mater. Sci. (2013).CrossRefGoogle Scholar
Kawasaki, M. and Langdon, T.G.: Developing superplasticity and a deformation mechanism map for the Zn-Al eutectoid alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528, 6140 (2011).CrossRefGoogle Scholar
Kawasaki, M. and Langdon, T.G.: Using deformation mechanism maps to depict flow processes in superplastic ultrafine-grained materials. J. Mater. Sci. 47, 7726 (2012).CrossRefGoogle Scholar
Kawasaki, M. and Langdon, T.G.: Grain boundary sliding in a superplastic Zn-Al alloy processed using severe plastic deformation. Mater. Trans. 49, 84 (2008).CrossRefGoogle Scholar
Ishikawa, H., Mohamed, F.A., and Langdon, T.G.: The influence of strain rate on ductility in the superplastic Zn-22% Al eutectoid alloy. Philos. Mag. 32, 1269 (1975).CrossRefGoogle Scholar
Mohamed, F.A. and Langdon, T.G.: Creep at low stress levels in the superplastic Zn-22% Al eutectoid. Acta Metall. 23, 117 (1975).CrossRefGoogle Scholar
Langdon, T.G. and Mohamed, F.A.: The activation energies for superplasticity. Scr. Metall. 11, 575 (1977).CrossRefGoogle Scholar
Mohamed, F.A., Shei, S.A., and Langdon, T.G.: The activation energies associated with superplastic flow. Acta Metall. 23, 1443 (1975).CrossRefGoogle Scholar
Liu, F.C. and Ma, Z.Y.: Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys. Scr. Mater. 62, 125 (2010).CrossRefGoogle Scholar
Mohamed, F.A. and Chauhan, M.: Interpretation of the creep behavior of nanocrystalline Ni in terms of dislocation accommodated boundary sliding. Metall. Mater. Trans. A 37, 3555 (2006).CrossRefGoogle Scholar
Mohamed, F.A.: Correlation between the deformation of nanostructured materials and the model of dislocation accommodated boundary sliding. Metall. Mater. Trans. A 39, 470 (2008).CrossRefGoogle Scholar
Chokshi, A.H.: Diffusion creep in metals and ceramics: Extension to nanocrystals. Mater. Sci. Eng., A 483484, 485 (2008).CrossRefGoogle Scholar
Mohamed, F.A. and Yang, H.: Deformation mechanisms in nanocrystalline materials. Metall. Mater. Trans. A 41, 823 (2010).CrossRefGoogle Scholar
Mohamed, F.A.: Deformation mechanism maps for micro-grained, ultrafine-grained and nano-grained materials. Mater. Sci. Eng., A 528, 1431 (2011).CrossRefGoogle Scholar
Wang, N., Wang, Z., Aust, K.T., and Erb, U.: Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall. Mater. 43, 519 (1995).CrossRefGoogle Scholar
Van Swygenhoven, H.: Polycrystalline materials – grain boundaries and dislocations. Science 296, 66 (2002).CrossRefGoogle ScholarPubMed
Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H.: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1, 1 (2002).CrossRefGoogle ScholarPubMed
Van Swygenhoven, H., Derlet, P.M., and Frøseth, G.: Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399 (2004).CrossRefGoogle ScholarPubMed
Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., and Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 (2003).CrossRefGoogle ScholarPubMed
Liao, X.Z., Zhou, F., Lavernia, E.J., He, D.W., and Zhu, Y.T.: Deformation twins in nanocrystalline Al. Appl. Phys. Lett. 83, 5062 (2003).CrossRefGoogle Scholar
Liao, X.Z., Zhao, Y.H., Srinivasan, S.G., Zhu, Y.T., Valiev, R.Z., and Gunderov, D.V.: Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl. Phys. Lett. 84, 592 (2004).CrossRefGoogle Scholar
Zhu, Y.T., Wu, X.L., Liao, X.Z., Narayan, J., Mathaudhu, S.N., and Kecskés, L.J.: Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl. Phys. Lett. 95, 031909 (2009).CrossRefGoogle Scholar
Cao, Y., Wang, Y.B., Liao, X.Z., Kawasaki, M., Ringer, S.P., Langdon, T.G., and Zhu, Y.T.: Applied stress controls the production of nano-twins in coarse-grained metals. Appl. Phys. Lett. 101, 231903 (2012).CrossRefGoogle Scholar
Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).CrossRefGoogle ScholarPubMed
Horita, Z., Smith, D.J., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G.: An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11, 1880 (1996).CrossRefGoogle Scholar
Horita, Z., Smith, D.J., Nemoto, M., Valiev, R.Z., and Langdon, T.G.: Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. J. Mater. Res. 13, 446 (1998).CrossRefGoogle Scholar
Chinh, N.Q., Szommer, P., Horita, Z., and Langdon, T.G.: Experimental evidence for grain boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv. Mater. 18, 34 (2006).CrossRefGoogle Scholar
Chinh, N.Q., Györi, T., Valiev, R.Z., Szommer, P., Varga, G., Havancsák, K., and Langdon, T.G.: Observations of unique plastic behavior in micro-pillars of an ultrafine-grained alloy. MRS Commun. 2, 75 (2012).CrossRefGoogle Scholar
Chinh, N.Q., Csanádi, T., Györi, T., Valiev, R.Z., Straumal, B.B., Kawasaki, M., and Langdon, T.G.: Strain rate sensitivity studies in an ultrafine-grained Al-30wt.%Zn alloy using micro- and nano-indentation. Mater. Sci. Eng., A 543, 117 (2012).CrossRefGoogle Scholar