Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T07:00:39.611Z Has data issue: false hasContentIssue false

Manipulating oxygen sublattice in ultrathin cuprates: A new direction to engineer oxides

Published online by Cambridge University Press:  04 February 2015

Debakanta Samal*
Affiliation:
Inorganic Materials Science Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
Gertjan Koster*
Affiliation:
Inorganic Materials Science Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
*
a)Address all correspondence to these authors. email: [email protected]
Get access

Abstract

Atomic engineering of complex oxide thin films is now reaching a new paradigm: the possibility to control the cation coordination by oxygen anions. Here, we show two examples of stabilization of novel structural phases by manipulating the oxygen sublattices in complex Cu-based oxide thin films grown on SrTiO3: (i) epitaxial strain stabilization of a near cubic form of CuO and (ii) thickness-dependent structural transformation from bulk planar (polar) to chain-type (nonpolar) in SrCuO2 thin films that relieves the electrostatic instability. Experimental investigation on ultrathin CuO layer identifies the existence of an elongated (c/a ∼ 1.34) rocksalt-type CuO phase, pointing to metastable 6-fold coordinated Cu with the hole occupied in the 3dx2y2 orbital. For ultrathin SrCuO2 layers, we demonstrate the possibility of moving oxygen ion from CuO2-plane to Sr-plane forming chain-type structure. X-ray absorption spectroscopy reveals preferential hole-occupation at the Cu-3d3z2r2 orbital for chain-type structure unlike to the planar case. Our findings testify unique stabilization processes through atomic rearrangement and provide new insight into the experimental realization of novel cuprate-hybrids to look for exciting electronic properties.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rijnders, G.J.H.M., Koster, G., Blank, D.H.A., and Rogalla, H.: In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure. Appl. Phys. Lett. 70, 1888 (1997).CrossRefGoogle Scholar
Bozovic, I. and Eckstein, J.N.: Analysis of growing films of complex oxides by RHEED. MRS Bull. 20, 32 (1995).CrossRefGoogle Scholar
Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M., and Lowndes, D.H.: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395 (2005).CrossRefGoogle ScholarPubMed
Chakhalian, J., Freeland, J.W., Srajer, G., Strempfer, J., Khaliullin, G., Cezar, J.C., Charlton, T., Dalgliesh, R., Bernhard, C., Cristiani, G., Habermeier, H.U., and Keimer, B.: Magnetism at the interface between ferromagnetic and superconducting oxides. Nat. Phys. 2, 244 (2006).Google Scholar
Chakhalian, J., Freeland, J.W., Habermeier, H.U., Cristiani, G., Khaliullin, G., van Veenendaal, M., and Keimer, B.: Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114 (2007).Google Scholar
Samal, D., Shivakumara, C., and Anil Kumar, P.S.: Magnetotransport study on La0.5Sr0.5CoO3-δ/YBa2Cu3O7-δ/La0.7Ca0.3MnO3-δ tri-layer system. Phys. Rev. B 77, 094510 (2008).Google Scholar
Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., and Tokura, Y.: Emergent phenomena at oxide interfaces. Nat. Mater. 11, 102 (2012).Google Scholar
Mannhart, J. and Schlom, D.G.: Oxide interfaces–An opportunity for electronics. Science 327, 1607 (2010).CrossRefGoogle ScholarPubMed
Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., and Triscone, J-M.: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141 (2011).CrossRefGoogle Scholar
May, S.J., Kim, J.W., Rondinelli, J.M., Karapetrova, E., Spaldin, N.A., Bhattacharya, A., and Ryan, P.J.: Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82, 014110 (2010).Google Scholar
He, J., Borisevich, A., Kalinin, S.V., Pennycook, S.J., and Pantelides, S.T.: Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).Google Scholar
Aso, R., Kan, D., Shimakaw, Z., and Kurata, H.: Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 3, 2214 (2013).Google Scholar
Rondinelli, J.M., May, S.J., and Freeland, J.W.: Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261 (2012).CrossRefGoogle Scholar
Rondinelli, J.M. and Spaldin, N.A.: A structure and properties of functional oxide thin films: Insights from electronic-structure calculations. Adv. Mater. 23, 3363 (2011).CrossRefGoogle ScholarPubMed
Hwang, H.Y., Cheong, S-W., Radaelli, P.G., Marezio, M., and Batlogg, B.: Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914 (1995).Google Scholar
Medard, M.L.: Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys.: Condens. Matter 9, 1679 (1997).Google Scholar
Wong, F.J., Baek, S-H., Chopdekar, R.V., Mehta, V.V., Jang, H.W., Eom, C-B., and Suzuki, Y.: Metallicity in LaTiO3 thin films induced by lattice deformation. Phys. Rev. B 81, 161101 (2010).Google Scholar
Boschker, H., Kautz, J., Houwman, E.P., Siemons, W., Blank, D.H.A., Huijben, M., Koster, G., Vailionis, A., and Rijnders, G.: High-temperature magnetic insulating phase in ultrathin La0.67Sr0.33MnO3 films. Phys. Rev. Lett. 109, 157207 (2012).CrossRefGoogle ScholarPubMed
Bousquet, E., Dawber, M., Stucki, N., Lichtensteiger, C., Hermet, P., Gariglio, S., Triscone, J-M., and Ghosez, P.: Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732 (2008).Google Scholar
Samal, D., Tan, H., Takamura, Y., Siemons, W., Verbeeck, J., Tendeloo, G.V., Arenholz, E., Jenkins, C.A., Rijnders, G., and Koster, G.: Direct structural and spectroscopic investigation of ultrathin films of tetragonal CuO: Six-fold co-ordinated copper. Europhys. Lett. 105, 17003 (2014).CrossRefGoogle Scholar
Siemons, W., Koster, G., Blank, D.H.A., Hammond, R.H., Geballe, T.H., and Beasley, M.R.: Tetragonal CuO: End member of the 3d transition metal monoxides. Phys. Rev. B 79, 195122 (2009).Google Scholar
Rocquefelte, X., Schwarz, X.K., and Blaha, P.: Theoretical investigation of the magnetic exchange interactions in copper(II) oxides under chemical and physical pressures. Sci. Rep. 2, 759 (2012).Google Scholar
Salluzzo, M., Aruta, C., Ausanio, G., D’Agostino, A., and Scotti di Uccio, U.: Effect of strain on the structure and critical temperature in superconducting Nd-doped YBa2Cu3O7-δ. Phys. Rev. B 66, 184518 (2002).Google Scholar
Salluzzo, M., de Luca, G.M., Marrè, D., Putti, M., Tropeano, M., Scotti di Uccio, U., and Vaglio, R.: Thickness effect on the structure and superconductivity of Nd1.2Ba1.8Cu3Oz epitaxial films. Phys. Rev. B 72, 134521 (2005).Google Scholar
Haage, T., Zegenhagen, J., Habermeier, H-U., and Cardona, M.: Nucleation mechanism of YBa2Cu3O7-δ on SrTiO3(001). Phys. Rev. Lett. 80, 4225 (1998).Google Scholar
Mattheiss, L.F.: Electronic structure of the 3d transition-metal monoxides. I. Energy-band results. Phys. Rev. B 5, 290 (1972).Google Scholar
Terakura, K., Oguchi, T., Williams, A.R., and Kübler, J.: Band theory of insulating transition-metal monoxides: Band-structure calculations. Phys. Rev. B 30, 4734 (1984).CrossRefGoogle Scholar
Harrison, W.A.: Heisenberg exchange in the magnetic monoxides. Phys. Rev. B 76, 054417 (2007).Google Scholar
Fischer, G., Däne, M., Ernst, A., Bruno, P., Lüders, M., Szotek, Z., Temmerman, W., and Hergert, W.: Exchange coupling in transition metal monoxides: Electronic structure calculations. Phys. Rev. B 80, 014408 (2009).Google Scholar
Yang, B., Thurston, T., Tranquada, T.J., and Shirane, G.: Magnetic neutron scattering of single-crystal cupric oxide. Phys. Rev. B 39, 4343 (1989).Google Scholar
Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T., and Ramirez, A.P.: Cupric oxide as an induced-multiferroic with high-T C. Nat. Mater. 7, 291 (2008).Google Scholar
Chen, X., Fu, C.L., Franchini, C., and Podloucky, R.: Hybrid density-functional calculation of the electronic and magnetic structures of tetragonal CuO. Phys. Rev. B 80, 094527 (2009).Google Scholar
Peralta, G., Puggioni, D., Filippetti, A., and Fiorentini, V.: Jahn-Teller stabilization of magnetic and orbital ordering in rocksalt CuO. Phys. Rev. B 80, 140408 (2009).Google Scholar
Rabinovich, K.S., Samoilenko, L.L., Zhuravleva, A.S., and Shneider, A.G.: Magnetic properties of high-symmetry CuO. Appl. Phys. Lett. 104, 182406 (2014).Google Scholar
Bednorz, J. and Muller, K.: Perovskite-type oxides—The new approach to high-T c superconductivity. Rev. Mod. Phys. 60, 585 (1988).Google Scholar
Grant, P.M.: Electronic properties of rocksalt copper monoxide: A proxy structure for high temperature superconductivity. J. Phys.: Conf. Ser. 129, 012042 (2008).Google Scholar
Ohtomo, A. and Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423 (2004).Google Scholar
Thiel, S., Hammerl, G., Schmehl, A., Schneider, C.W., and Mannhart, J.: Tunable quasi-two dimensional electron gases in oxide heterostructures. Science 313, 1942 (2006).Google Scholar
Reyren, N., Thiel, S., Caviglia, A.D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A.S., Jaccard, D., Gabay, M., Muller, D.A., Triscone, J-M., and Mannhart, J.: Superconducting interfaces between insulating oxides. Science 317, 119 (2007).Google Scholar
Bert, J.A., Kalisky, B., Bell, C., Kim, M., Hikita, Y., Hwang, H.Y., and Moler, K.A.: Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 7, 767 (2011).Google Scholar
Brinkman, A., Huijben, M., van Zalk, M., Huijben, J., Zeitler, U., Maan, J.C., van der Wiel, W.G., Rijnders, G., Blank, D.H.A., and Hilgenkamp, H.: Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493 (2007).Google Scholar
Millis, A.J. and Schlom, D.G.: Electron-hole liquids in transition-metal oxide heterostructures. Phys. Rev. B 82, 073101 (2010).Google Scholar
Takano, M., Takeda, Y., Okada, H., Miyamoto, M., and Kusaka, T.: ACuO2 (A: alkaline earth) crystallizing in a layered structure. Phys. C 159, 375 (1989).Google Scholar
Koster, G., Brinkman, A., Hilgenkamp, H., Rijnders, A.J.H.M., and Blank, D.H.A.: High-T c superconducting thin films with composition control on a sub-unit cell level; the effect of the polar nature of the cuprates. J. Phys.: Condens. Matter 20, 264007 (2009).Google Scholar
Matsueda, H., Bulut, N., Tohyama, T., and Maekawa, S.: Temperature dependence of spinon and holon excitations in one-dimensional Mott insulators. Phys. Rev. B 72, 75136 (2005).CrossRefGoogle Scholar
Kim, B.J., Koh, H., Rotenberg, E., Oh, S-J., Eisaki, H., Motoyama, N., Uchida, S., Tohyama, T., Maekawa, S., Shen, Z-X., and Kim, C.: Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2. Nat. Phys. 2, 397 (2006).CrossRefGoogle Scholar
Kim, C., Matsuura, A.Y., Shen, Z.X., Motoyama, N., Eisaki, H., Uchida, S., Tohyama, T., and Maekawa, S.: Observation of spin-charge separation in one-dimensional SrCuO2. Phys. Rev. Lett. 77, 4054 (1996).Google Scholar
Samal, D., Tan, H., Molegraaf, H., Kuiper, B., Siemons, W., Bals, S., Verbeeck, J., Tendeloo, G.V., Takamura, Y., Arenholz, E., Jenkins, C.A., Rijnders, G., and Koster, G.: Experimental evidence for oxygen sub-lattice control in polar infinite-layer SrCuO2. Phys. Rev. Lett. 111, 096102 (2013).Google Scholar
Kikkawa, G.E.S., Kanamaru, F., and Miyamoto, Y.: Structural, electrical and magnetic studies of infinite-layered Sr1−xLaxCuO2 superconductor. Phys. C 196, 271 (1992).CrossRefGoogle Scholar
Azuma, M., Hiroi, Z., Takano, M., Bando, Y., and Takeda, Y.: Superconductivity at 110 K in the infinite-layer compound (Sr1-xCax)1-yCuO2. Nature 356, 775 (1992).Google Scholar
Smith, M.G., Manthiram, A., Zhou, J., Goodenough, J.B., and Markert, J.T.: Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1–yNdyCuO2. Nature 351, 549 (1991).Google Scholar
Zhong, Z., Koster, G., and Kelly, P.J.: Prediction of thickness limits of ideal polar ultrathin films. Phys. Rev. B 85, 121411 (2012).Google Scholar
Goniakowski, J., Noguera, C., and Giordano, L.: Prediction of uncompensated polarity in ultrathin films. Phys. Rev. Lett. 98, 205701 (2007).Google Scholar
Goniakowski, J., Noguera, C., and Giordano, L.: Using polarity for engineering oxide nanostructures: Structural phase diagram in free and supported MgO (111) ultrathin films. Phys. Rev. Lett. 93, 215702 (2004).Google Scholar
Harrison, A., Kraut, E.A., Waldrop, J.R., and Grant, R.W.: Polar heterojunction interfaces. Phys. Rev. B 18, 44024410 (1978).Google Scholar
Samal, D., Takamura, Y., Rijnders, G., and Koster, G.: Tailoring superconducting properties in infinite-layer based cuprate heterostructures. (To be published).Google Scholar
Huijben, M., Koster, G., Kruize, M.K., Wenderich, S., Verbeeck, J., Bals, S., Slooten, E., Shi, B., Molegraaf, H.J.A., Kleibeuker, J.E., van Aert, S., Goedkoop, J.B., Brinkman, A., Blank, D.H.A., Golden, M.S., van Tendeloo, G., Hilgenkamp, H., and Rijnders, G.: Defect engineering in oxide heterostructures by enhanced oxygen surface exchange. Adv. Funct. Mater. 23, 5240 (2013).Google Scholar
Di Castro, D., Salvato, M., Tebano, A., Innocenti, D., Aruta, C., Prellier, W., Lebedev, O.I., Ottaviani, I., Brookes, N.B., Minola, M., Moretti Sala, M., Mazzoli, C., Medaglia, P.G., Ghiringhelli, G., Braicovich, L., Cirillo, M., and Balestrino, G.: Occurrence of a high-temperature superconducting phase in (CaCuO2)n/(SrTiO3)m superlattice. Phys. Rev. B 86, 134524 (2012).CrossRefGoogle Scholar
Kuiper, B., Samal, D., Blank, D.H.A., ten Elshof, J.E., Rijnders, G., and Koster, G.: Control of oxygen sub-lattice structure in ultra-thin SrCuO2 films studied by x-ray photoelectron diffraction. APL Mater. 1, 042113 (2013).Google Scholar
Cyrot, M. and Pavuna, D.: Introduction to Superconductivity and High-Tc Materials (World Scientific, Singapore, 1992).Google Scholar
Balestrino, G., Martellucci, S., Medaglia, P.G., Paoletti, A., and Petrocelli, G.: Dependence of the critical temperature on n in (BaCuO2)2/(CaCuO2)n superlattices. Phys. Rev. B 58, R8925 (1998).Google Scholar
Balestrino, G., Pasquini, G., and Tebano, A.: Structural features of (Ba2Cu2O4+x)/(CaCuO2)n superconducting oxide superlattices with ultrathin individual layers. Phys. Rev. B 62, 1421 (2000).Google Scholar
Norton, D.P., Chakoumakos, B.C., Budai, J.D., Lowndes, D.H., Sales, B.C., Thompson, J.R., and Christen, D.K.: Superconductivity in SrCuO2-BaCuO2 superlattices: Formation of artificially layered superconducting materials. Science 265, 2074 (1994).Google Scholar
Rosenauer, A. and Schowalter, M.: STEMSIM-A New Software Tool for Simulation of STEM HAADF: Microscopy of Semiconducting Materials (MSM) Conference, 2007, Vol. 120, Springer, Netherlands, 2008; p. 169.Google Scholar
Findlay, S.D., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., and Ikuhara, Y.: Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903 (2010).CrossRefGoogle ScholarPubMed
Sarma, D.D., Strebel, O., Simmons, C.T., Neukirch, U., Kaindl, G., Hoppe, R., and Muller, H.P.: Electronic structure of high-T c superconductors from soft-x-ray absorption. Phys. Rev. B 37, 9784 (1988).Google Scholar
Chen, C.T., Tjeng, L.H., Kwo, J., Kao, H.L., Rudolf, P., Sette, F., and Fleming, R.M.: Out-of-plane orbital characters of intrinsic and doped holes in La2-xSrxCuO4. Phys. Rev. Lett. 68, 2543 (1992).Google Scholar
Hawthorn, D.G., Shen, K.M., Geck, J., Peets, D.C., Wadati, H., Okamoto, J., Huang, S-W., Huang, D.J., Lin, H-J., Denlinger, J.D., Liang, R., Bonn, D.A., Hardy, W.N., and Sawatzky, G.A.: Resonant elastic soft x-ray scattering in oxygen-ordered YBa2Cu3O6+δ. Phys. Rev. B 84, 075125 (2011).Google Scholar
Salluzzo, M., Ghiringheli, G., Brookes, N.B., De Luca, G.M., Fracassi, F., and vaglio, R.: Superconducting-insulator transition driven by out of plane carrier localization in Nd1.2Ba1.8Cu3O7+x. Phys. Rev. B 75, 054519 (2007).Google Scholar
Filippetti, A. and Fiorentini, V.: Magnetic ordering in CuO from first principles: A cuprate antiferromagnet with fully three-dimensional exchange interactions. Phys. Rev. Lett. 95, 086405 (2005).Google Scholar
Nücker, N., Pellegrin, E., Schweiss, P., Sohmen, E., Fink, J., Molodtsov, S.L., Simmons, C.T., Domke, M., Kaindl, G., Frientrup, W., Chen, C.T., Erb, A., and Müller-Vogt, G.: Site-specific and doping-dependent electronic structure of YBa2Cu3Ox probed by O 1s and Cu 2p x-ray-absorption spectroscopy. Phys. Rev. B 51, 8529 (1995).Google Scholar
Aruta, C., Ghiringhelli, G., Dallera, C., Fracassi, F., Medaglia, P.G., Tebano, A., Brookes, N.B., Braicovich, L., and Balestrino, G.: Hole redistribution across interfaces in superconducting cuprate superlattices. Phys. Rev. B 78, 205120 (2008).CrossRefGoogle Scholar
Aruta, C., Schlueter, C., Lee, T.L., Di Castro, D., Innocenti, D., Tebano, A., Zegenhagen, J., and Balestrino, G.: Interface reconstruction in superconducting CaCuO2/SrTiO3 superlattices: A hard x-ray photoelectron spectroscopy study. Phys. Rev. B 78, 155145 (2013).Google Scholar
Moser, S., Moreschini, L., Yang, H.-Y., Innocenti, D., Fuchs, F., Hansen, N.H., Chang, Y.J., Kim, K.S., Walter, A.L., Bostwick, A., Rotenberg, E., Mila, F., and Grioni, M.: Angle-Resolved Photoemission Spectroscopy of Tetragonal CuO: Evidence for Intralayer Coupling Between Cupratelike Sublattices. Phys. Rev. Lett. 113, 187001 (2014).Google Scholar