Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T01:24:45.506Z Has data issue: false hasContentIssue false

Magnetoresistance in a deformed Cu-Ni-Fe alloy with ultrafine multilayer structure

Published online by Cambridge University Press:  03 March 2011

L.H. Chen
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-0636
S. Jin
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-0636
T.H. Tiefel
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-0636
R. Ramesh
Affiliation:
Bellcore, Red Bank, New Jersey 07701
Get access

Abstract

The creation of a giant magnetoresistance (GMR) effect in a spinodally decomposed and deformed Cu-20% Ni-20% Fe alloy is reported. The alloy is processed to contain a locally multilayered superlattice-like structure with alternating ferromagnetic and nonmagnetic layers with a size scale of 10-20 Å. The microstructural modification produced a dramatic improvement in room-temperature magnetoresistance ratio from ∼0.6 to ∼5%. The observed magnetoresistance is most likely related to the spin-dependent scattering at the two-phase interface and in the ferromagnetic phase, although the exact mechanism involved may be qualitatively different from the usual GMR picture. A rather unusual temperature-dependence of magnetoresistance ratio, i.e., the room-temperature value being greater than that at 4.2 K, was found.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Concise Encyclopedia of Magnetic and Superconducting Materials, edited by Evetts, J. (Pergamon Press, New York, 1992), p. 287.Google Scholar
2Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Greuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
3Binasch, G., Grunberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar
4Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).CrossRefGoogle Scholar
5Heinrich, B., Celinski, Z., Cochran, J. F., Wuir, W. B., Rudd, J., Zhong, Q. M., Arrot, A. S., Myrtle, K., and Kirschner, J., Phys. Rev. Lett. 64, 373 (1990).CrossRefGoogle Scholar
6Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990).CrossRefGoogle Scholar
7Brubaker, M. E., Mattson, J. E., Sowers, C. H., and Bader, S. O., Appl. Phys. Lett. 58, 2306 (1991).Google Scholar
8Bennett, W. R., Schwartzacher, W., and Egelhoff, W. F. Jr., Phys. Rev. Lett. 65, 3169 (1990).CrossRefGoogle Scholar
9Chen, L. H., Tiefel, T. H., Jin, S., van Dover, R. B., Gyorgy, E. M., and Fleming, R. M., Appl. Phys. Lett. 63, 1279 (1993).CrossRefGoogle Scholar
10Xiao, J. Q., Jiang, J. S., and Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
11Berkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hutten, A., and Thomas, G., Phys. Rev. Lett. 68, 3744 (1992).Google Scholar
12Wecker, J., Von Helmolt, R., Schultz, L., and Samwer, K., Proceedings of InterMag Conference, Stockholm, Sweden (1993).Google Scholar
13Johnson, M., Science 260, 320 (1993).CrossRefGoogle Scholar
14Chen, L. H., Jin, S., Tiefel, T. H., Chang, S. H., Eibschutz, M., and Ramesh, R., Phys. Rev. B49.Google Scholar
15Bozorth, R. M., Ferromagnetism (D. Van Nostrand Co., New York, 1951), p. 402.Google Scholar
16Cullity, B. D., Introduction to Magnetic Materials (Addison-Wesley, Menlo Park, CA, 1972), p. 556.Google Scholar
17Butler, E. P. and Thomas, G., Acta Metall. 18, 347 (1970).CrossRefGoogle Scholar
18Livak, R. J. and Thomas, G., Acta Metall. 19, 497 (1971).Google Scholar
19Dieny, B., Teixera, S. R., Rodmacq, B., Cowache, C., Huffret, S., and Pierre, J., J. Magn. Magn. Mater, (in press).Google Scholar
20Parkin, S. S. P.et al, Europhys. Lett. 22, 455 (1993).Google Scholar
21Hylton, T. L., Coffey, K. R., Parker, M. A., and Howard, J. K., Science 261, 1021 (1993).Google Scholar