Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T09:52:03.372Z Has data issue: false hasContentIssue false

Magnetic Properties of Graphitically Encapsulated Nickel Nanocrystals

Published online by Cambridge University Press:  31 January 2011

J.-H. Hwang
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston, Illinois 60208
V. P. Dravid
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston, Illinois 60208
M. H. Teng
Affiliation:
Department of Geology, National Taiwan University, Taipei, Taiwan, Republic of China
J. J. Host
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston, Illinois 60208
B. R. Elliott
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston, Illinois 60208
D. L. Johnson
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston, Illinois 60208
T. O. Mason
Affiliation:
Department of Materials Science and Engineering, Materials Research Center, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Graphitically encapsulated ferromagnetic Ni nanocrystals have been synthesized via a modified tungsten arc-discharge method. By virtue of the protective graphitic coating, these nanocrystals are stable against environmental degradation, including extended exposure to strong acids. The magnetic properties of the encapsulated particles are characterized with regard to the nanoscale nature of the particles and the influence of the graphitic coating which is believed to be benign insofar as the intrinsic magnetic properties of the encapsulated nanocrystals are concerned. The Curie temperature of graphitically encapsulated Ni nanocrystals is the same as that of microcrystalline Ni. However, saturation magnetization, remanent magnetization, and coercivity of these particles are reduced, for a range of temperatures. The unique features are compared with those of unencapsulated nanocrystalline and coarse microcrystalline nickel particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Karch, J., Birringer, R., and Gleiter, H., Nature (London) 330, 556 (1987).CrossRefGoogle Scholar
2.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
3.Hahn, H. and Averback, R. S., J. Am. Ceram. Soc. 74 (11), 2918 (1991).CrossRefGoogle Scholar
4.Beck, D. D. and Siegel, R. W., J. Mater. Res. 7, 2840 (1992).CrossRefGoogle Scholar
5.McMichael, R. D., Shull, R. D., Swartzendruber, L. J., and Bennett, L. H., J. Magn. Magn. Mater. 11, 29 (1992).CrossRefGoogle Scholar
6.Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47 (5), 2200 (1976).CrossRefGoogle Scholar
7.Birringer, R., Gleiter, H., Klein, H. P., and Marquardt, P., Phys. Lett. 102A (8), 365 (1984).CrossRefGoogle Scholar
8.Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
9.Fougee, G. E., Weertman, J. R., and Siegel, R. W., Nanostructured Mater. 5 (2), 127 (1995).CrossRefGoogle Scholar
10.Siegel, R. W., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
11.Lee, J., Hwang, J.-H., Mashek, J. J., Mason, T. O., Miller, A. E., and Siegel, R. W., J. Mater. Res. 10, 2295 (1995).CrossRefGoogle Scholar
12.Skandan, G., Nanostructured Mater. 5 (2), 111 (1995).CrossRefGoogle Scholar
13.Zhou, Y. C. and Rahaman, M. N., J. Mater. Res. 8, 1680 (1993).CrossRefGoogle Scholar
14.Bates, S. E., Buhro, W. E., Frey, C. A., Sastry, S. M. L., and Kelton, K. F., J. Mater. Res. 10, 2599 (1995).CrossRefGoogle Scholar
15.Matson, D. W., Linehan, J. C., and Geusic, M. E., Part. Sci. Technol. 10, 143 (1994).CrossRefGoogle Scholar
16.Ruoff, R. S., Lorents, D. C., Chen, B., Malhotra, R., and Subramoney, S., Science 259, 346 (1993).CrossRefGoogle Scholar
17.Diggs, B., Zhou, A., Silva, C., Kirkpatrick, S., Nuhfer, N. T., McHenry, M. E., Petasis, D., Majetich, S. A., Brunett, B., Artman, J. O., and Staley, S. W., J. Appl. Phys. 75 (10), 5879 (1994).CrossRefGoogle Scholar
18.Saito, Y., Yoshikawa, T., Okuda, M., Ohkohchi, M., Ando, Y., Kasuya, A., and Nishina, Y., Chem. Phys. Lett. 209, 72 (1993).CrossRefGoogle Scholar
19.Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32, L280 (1993).CrossRefGoogle Scholar
20.Saito, Y., Okuda, M., Yoshikawa, T., Kasuya, A., and Nishina, Y., J. Phys. Chem. 98, 6696 (1994).CrossRefGoogle Scholar
21.Subramoney, S., Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., Dyer, M. J., and Parvin, K., Carbon 32 (3), 507 (1994).CrossRefGoogle Scholar
22.Majetich, S. A., Artman, J. O., McHenry, M. E., Nuhfer, N. T., and Staley, S. W., Phys. Rev. B 48 (22), 16 845 (1993).CrossRefGoogle Scholar
23.Murakami, Y., Shibata, T., Okuyama, K., Arai, T., Suematsu, H., and Yoshida, Y., J. Phys. Chem. Solids 54 (12), 1861 (1993).CrossRefGoogle Scholar
24.McHenry, M. E., Nakamura, Y., Kirkpatrick, S., Johnson, F., Curtin, S., De Graef, M., and Nuhfer, N. T., in Proc. of the Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, edited by Kadish, K. M. and Ruoff, R. S. (The Electrochemical Society, Inc., Pennington, NJ, 1994), p. 1463.Google Scholar
25.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., J. Phys. Chem. Solids 54 (12), 1849 (1993).CrossRefGoogle Scholar
26.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., J. Phys. Chem. Solids 75 (1), 134 (1994).Google Scholar
27.Brunsman, E. M., Sutton, R., Bortz, E., Kirkpatrick, K., Midelfort, K., Williams, J., Smith, P., McHenry, M. E., Majetich, S. A., Artman, J. O., De Graef, M., and Staley, S. W., J. Appl. Phys. 75 (10), 5882 (1994).CrossRefGoogle Scholar
28.McHenry, M. E., Majetich, S. A., Artman, J. O., De Graef, M., and Staley, S. W., Phys. Rev. B 49 (16), 11 358 (1994).CrossRefGoogle Scholar
29.Hihara, T., Onodera, H., Sumiyama, K., Suzuki, K., Kasuya, A., Nishina, Y., Saito, Y., Yoshikawa, T., and Okuda, M., Jpn. J. Appl. Phys. 33, L24 (1994).CrossRefGoogle Scholar
30.Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J.-H., Johnson, D. L., Mason, T. O., and Weertman, J. R., Nature (London) 374, 602 (1995).CrossRefGoogle Scholar
31.Dravid, V. P., Teng, M. H., Host, J. J., Elliott, B. R., Johnson, D. L., Mason, T. O., Weertman, J. R., Hwang, J.-H., US Patent 5 472 749 (1995).Google Scholar
32.Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J.-H., Mason, T. O., Johnson, D. L., and Dravid, V. P., J. Mater. Res. 12 (5) (1997, in press).CrossRefGoogle Scholar
33.Omar, M. A., in Elementary Solid State Physics (Addison-Wesley Publishing Company, Reading, MA, 1975), p. 423.Google Scholar
34.Du, Y.-W., Xu, M.-X., Wu, J., Shi, Y.-B., and Lu, H.-X., J. Appl. Phys. 70 (10) 5903 (1991).CrossRefGoogle Scholar
35.Tamura, K. and Endo, H., Phys. Lett. 29A (2), 52 (1969).CrossRefGoogle Scholar
36.Wagner, W., Wiedenmann, A., Petry, W., Geibel, A., and Gleiter, H., J. Mater. Res. 6, 2305 (1991).CrossRefGoogle Scholar
37.Schaefer, H.-E., Kisker, H., Kronmuller, H., and Wurschum, R., Nanostructured Mater. 1, 523 (1992).CrossRefGoogle Scholar
38.Wang, X. K., Chang, R. P. H., Patashinski, A., and Ketterson, J. B., J. Mater. Res. 9, 1578 (1994).CrossRefGoogle Scholar
39.Ohnuma, S. and Kunimoto, A., J. Appl. Phys. 63 (8), 4243 (1988).CrossRefGoogle Scholar
40.Gong, W., Li, H., Zhao, Z., and Chen, J., J. Appl. Phys. 69 (8), 5119 (1991).CrossRefGoogle Scholar
41.Aus, M. J., Szunar, B., El-Sherik, A. M., Erb, U., Palumbo, G., and Aust, K. T., Scripta Metall. et Mater. 27 (11), 1639 (1992).CrossRefGoogle Scholar
42.Sethi, S. A. and Tholen, A., in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by Nastasi, M.et al. (Kluwer Academic Publishers, The Netherlands, 1993), p. 157.CrossRefGoogle Scholar
43.Sakka, Y. and Uchikoshi, T., Powder Metall. 36 (3), 179 (1993).CrossRefGoogle Scholar