Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T07:18:22.308Z Has data issue: false hasContentIssue false

Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity

Published online by Cambridge University Press:  10 September 2013

Huan Liu
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Yeheng He
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Xin Liang*
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Fe3O4@TiO2 magnetic photocatalysts containing sub-10-nm TiO2 nanocrystals with two different morphologies (nanoparticles and nanorods) were prepared via a facile straight dipping process. A series of comparative experiments on organic pollutant degradation demonstrated that Fe3O4@TiO2 nanorods show superior activity and faster degradation rates than Fe3O4@TiO2 nanoparticles. Combined with the study of high resolution transmission electron microscopy, crystal models are given to analyze the morphology effect of TiO2 nanocrystals on their photocatalytic activities for organic degradation. TiO2 nanorods with more (100) crystal planes, which have relatively higher surface energy and relative higher density of Ti atoms, showed a higher activity than that of TiO2 nanoparticles. Furthermore, both Fe3O4@TiO2 nanorods and Fe3O4@TiO2 nanoparticles show better photocatalytic activities than several comparison Fe3O4@TiO2 samples due to the strong size effect arising from the tiny size of TiO2 nanorods and nanoparticles. These magnetic photocatalysts also show advantages in separation and recycling utilization.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fox, M.A. and Dulay, M.T.: Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993).Google Scholar
Heller, A.: Chemistry and applications of photocatalytic oxidation of thin organic films. Acc. Chem. Res. 28, 503 (1995).Google Scholar
Linsebigler, A.L., Lu, G., and Yates, J.T. Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).Google Scholar
Fu, W., Yang, H., Li, M., Yang, N., and Zou, G.: Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Mater. Lett. 59, 3530 (2005).Google Scholar
Watson, S., Beydoun, D., and Amal, R.: Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. J. Photochem. Photobiol., A 148, 303 (2002).Google Scholar
Xu, M.W., Bao, S.J., and Zhang, X.G.: Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett. 59, 2194 (2005).Google Scholar
Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y.: Photocatalytic hydrogenation of propyne with water on small-particle titania: Size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305 (1987).Google Scholar
Kormann, C., Bahnemann, D.W., and Hoffmann, M.R.: Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196 (1988).Google Scholar
Dinh, C.T., Nguyen, T.D., Kleitz, F., and Do, T.O.: Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 3(11), 3737 (2009).Google Scholar
Li, J., Yu, Y., Chen, Q., and Xu, D.: Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors. Cryst. Growth Des. 10, 2111 (2010).Google Scholar
Li, Y., Zhang, M., Guo, M., and Wang, X.: Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Rare Met. 28, 423 (2009).Google Scholar
Xuan, S., Jiang, W., Gong, X., Hu, Y., and Chen, Z.: Magnetically separable Fe3O4/TiO2 hollow spheres: Fabrication and photocatalytic activity. J. Phys. Chem. 113, 553 (2008).Google Scholar
Agrawal, M., Gupta, S., Pich, A., Zafeiropoulos, N.E., Rubio-Retama, J., Jehnichen, D., and Stamm, M.: Template-assisted fabrication of magnetically responsive hollow titania capsules. Langmuir 26, 17649 (2010).Google Scholar
Ma, W.F., Zhang, Y., Li, L.L., You, L.J., Zhang, P., Zhang, Y.T., Li, J.M., Yu, M., Guo, J., and Lu, H.J.: Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano 6, 3179 (2012).Google Scholar
Yan, A., Liu, X., Qiu, G., Wu, H., Yi, R., Zhang, N., and Xu, J.: Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J. Alloys Compd. 458, 487 (2008).Google Scholar
Li, X.L., Peng, Q., Yi, J.X., Wang, X., and Li, Y.: Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur. J. 12, 2383 (2005).Google Scholar
Al-Ekabi, H. and Serpone, N.: Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J. Phys. Chem. 92, 5726 (1988).Google Scholar
Leng, W.H., Liu, H., Cheng, S.A., Zhang, J.Q., and Cao, C.N.: Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel. J. Photochem. Photobiol., A 131, 125 (2000).Google Scholar
Domènech, X. and Peral, J.: Kinetics of the photocatalytic oxidation of N (III) and S (IV) on different semiconductor oxides. Chemosphere 38, 1265 (1999).Google Scholar
Laoufi, N., Tassalit, D., and Bentahar, F.: The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. GLOBAL NEST J 3, 10 (2008).Google Scholar
Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature. 453, 638 (2008).Google Scholar
Penn, R.L. and Banfield, J.F.: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 63, 1549 (1999).Google Scholar
Jun, Y., Casula, M.F., Sim, J.H., Kim, S.Y., Cheon, J., and Alivisatos, A.P.: Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc. 125, 15981 (2003).Google Scholar
Chemseddine, A. and Moritz, T.: Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 2, 235 (1999).Google Scholar
De Angelis, F., Vitillaro, G., Kavan, L., Nazeeruddin, M.K., and Grätzel, M.: Modeling ruthenium dye sensitized TiO2 surfaces exposing the (001) or (101) faces: A first principles investigation. J. Phys. Chem. C 116, 18124 (2012).Google Scholar
Anandan, S., Sathish Kumar, P., Pugazhenthiran, N., Madhavan, J., and Maruthamuthu, P.: Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Sol. Energy Mater. Sol. Cells 92, 929 (2008).Google Scholar
Harir, M., Gaspar, A., Kanawati, B., Fekete, A., Frommberger, M., Martens, D., Kettrup, A., El Azzouzi, M., and Schmitt-Kopplin, P.: Photocatalytic reactions of imazamox at TiO2, H2O2 and TiO2/H2O2 in water interfaces: Kinetic and photoproducts study. Appl. Catal., B 84, 524 (2008).Google Scholar
Lazzeri, M., Vittadini, A., and Selloni, A.: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B: Condens. Matter 63, 155409 (2001).Google Scholar
Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).Google Scholar