Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T06:18:58.247Z Has data issue: false hasContentIssue false

Magnetic characterization of calcium-nickel-potassium oxide catalysts

Published online by Cambridge University Press:  03 March 2011

Dale L. Perry
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, California 94720
Paul Berdahl
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, California 94720
Charles Perrino
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, California 94720
Get access

Abstract

SQUID magnetometer characterization of Ca–Ni–K–O catalyst materials reveals complex magnetic behavior. The magnetic properties are generally determined by the antiferromagnetic material NiO, but samples with traces of elemental nickel show marked effects of ferromagnetism. Potassium doping enhances the formation of metallic nickel. Further deviations from bulk NiO properties can be attributed to NiO particle size effects (superparamagnetism) and to the presence of paramagnetic impurities, possibly Ni3+ ions.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pereira, P., Lee, S. H., Somorjai, G. A., and Heinemann, H., Catal. Lett. 6, 255 (1990).Google Scholar
2Rasko, J., Pereira, P., Somorjai, G. A., and Heinemann, H., Catal. Lett. 9, 395 (1991).Google Scholar
3Rasko, J., Somorjai, G. A., and Heinemann, H., Appl. Catal. A, General 84, 57 (1992).CrossRefGoogle Scholar
4Ginter, D. M., Magni, E., Somorjai, G. A., and Heinemann, H., Catal. Lett. 16, 197 (1992).CrossRefGoogle Scholar
5Chang, Y. F., Somorjai, G. A., and Heinemann, H., J. Catal. 141, 713 (1993).Google Scholar
6Chang, Y. F., Somorjai, G. A., and Heinemann, H., J. Catal. 142, 697 (1993).CrossRefGoogle Scholar
7Mao, X. L., Perry, D. L., and Russo, R. E., J. Mater. Res. 8, 2400 (1993).CrossRefGoogle Scholar
8Bean, C. P., J. Appl. Phys. 26, 1381 (1955).CrossRefGoogle Scholar
9Jacobs, I. S. and Bean, C. P., in Magnetism, edited by Rado, G. T. and Suhl, H. (Academic Press, New York, 1963), Vol. III, p. 271.Google Scholar
10Gittleman, J. I., Abeles, B., and Bozowski, S., Phys. Rev. B 9, 3891 (1974).CrossRefGoogle Scholar
11Furubayashi, T. and Nakatani, I., Solid State Commun. 74, 821 (1990).CrossRefGoogle Scholar
12Gong, W., Li, H., Zhao, Z., and Chen, J., J. Appl. Phys. 69, 5119 (1991).Google Scholar
13Mauger, A., Escorne, M., Paul-Boncour, V., Percheron-Guegan, A., Achard, J. C., and Barrault, J., J. Phys. Chem. 92, 6004 (1988).Google Scholar
14Escorne, M., Mauger, A., Paul-Boncour, V., and Percheron-Guegan, A., Solid State Commun. 76, 757 (1990).CrossRefGoogle Scholar
15Richardson, J. T. and Milligan, W. O., Phys. Rev. 102, 1289 (1956).CrossRefGoogle Scholar
16Singer, J. R., Phys. Rev. 104, 929 (1956).Google Scholar
17Néel, L., Compt. Rend. Acad. Sci. 252, 4075 (1961); 253, 9, 203, 1286 (1961); 254, 598 (1962).Google Scholar
18Néel, L., J. Phys. Soc. Jpn. 17, Suppl. B-I, 676 (1962).Google Scholar
19Cohen, J., Creer, K. M., Pauthenet, R., and Srivastava, K., J. Phys. Soc. Jpn. 17, Suppl. B-I, 685 (1962).Google Scholar
20Schuele, W. J. and Deetscreek, V. D., J. Appl. Phys. 33, 1136 (1962).Google Scholar
21Matsuo, S., Satou, S., Suzuki, M., Sano, M., and Nakano, H., Z. Phys. D–Atoms, Molecules, Clusters 18, 281 (1991).Google Scholar
22Richardson, J. T., Yiagas, D. I., Turk, B., Forster, K., and Twigg, M. V., J. Appl. Phys. 70, 6977 (1991).Google Scholar
23Richardson, J. T., Turk, B., Lei, M., and Twigg, M. V., Appl. Catal. 83, 87 (1992).Google Scholar
24Ref. 9, Sees. 3–5.Google Scholar