Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T15:16:43.097Z Has data issue: false hasContentIssue false

Magnetic alignment in 2212 Bi-based superconducting system: II. Bi2Sr2Ca1−xDyxCu2O8−yx = 0.2 glass recrystallized in 0.6 T magnetic field

Published online by Cambridge University Press:  03 March 2011

S. Stassen
Affiliation:
S.U.P.R.A.S., Chemistry Institute B6, University of Liège. Sart-Tilman, B-4000 Liège, Belgium
R. Cloots
Affiliation:
S.U.P.R.A.S., Chemistry Institute B6, University of Liège, Sart-Tilman, B-4000 Liège, Belgium and S.U.P.R.A.S., Montefore Institute B28, University of Liège, Sart-Tilman, B-4000 Liège, Belgium
A. Rulmont
Affiliation:
S.U.P.R.A.S., Chemistry Institute B6, University of Liège, Sart-Tilman, B-4000 Liège, Belgium
M. Ausloos
Affiliation:
S.U.P.R.A.S., Physics Institute B5, University of Liège, Sart-Tilman, B-4000 Liège, Belgium
Get access

Abstract

Starting from a glassy precursor, Bi2Sr2Ca1−xDyxCu2O8−y (for x = 0.2) was recrystallized under a 0.6 T magnetic field. After splat quenching, the samples were heated and sintered at different temperatures T1, then slowly cooled. X-ray diffraction data, sometimes showing 00l peak splitting and electron scanning microscopy pictures, were collected. The results showed that the magnetic field could orient the grains and led to a magnetically textured growth process. Secondary phases formed in the system during this process were identified by EDX analysis. The optimum T1 for texturing was found to be between 930 °C and 950 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhou, J. P., Dou, S. X., Liu, H. K., Gouch, A. J., Apperley, M. H., Savvides, N., and Sorrell, C. C., Supercond. Sci. Technol. 2, 212 (1989).CrossRefGoogle Scholar
2Cloots, R., Ph.D. Thesis, University of Liége, Belgium (1993).Google Scholar
3Barat, P., Bandyopadhyay, S. K., Dasgupta, P., Sen, P., De, U., Kar, S. K., Mukhopadyay, P. K., and Majumdar, C. K., Physica C 218, 63 (1993).CrossRefGoogle Scholar
4Régnier, P., Le Hazif, R., and Chaffron, L., Int. Conf. on Modern Aspects of Superconductivity Proc. (IITT, Paris, 1989), p. 133.Google Scholar
5Pollard, R. J., McCartney, D. G., McNAlford, N., and Button, T., Supercond. Sci. Technol. 2, 169 (1989).CrossRefGoogle Scholar
6Farrell, D. E., Chandrasekhar, B. S., DeGuire, M.R., Fang, M. M., Kogan, V. G., Clem, J. R., and Finnemore, D. K., Phys. Rev. B 36, 4025 (1987).CrossRefGoogle Scholar
7Lusnikov, A., Miller, L. L., McCallum, R.W., Mitra, S., Lee, W. C., and Johnston, D. C., J. Appl. Phys. 65, 3136 (1989).CrossRefGoogle Scholar
8de Rango, P., Lees, M., Lejay, P., Sulpice, A., Tournier, R., Ingold, M., Germi, P., and Pernet, M., Nature (London) 349, 770 (1991).CrossRefGoogle Scholar
9De Rango, P., Lees, M. R., Lejay, P., Sulpice, A., and Tournier, R., Proc. SEE Conf. Céramiques Supraconductrices à Haute Température Critique, Caen, France (1990), p. 210.Google Scholar
10Holloway, A., McCallum, R.W., and Arrasmith, S. R., J. Mater. Res. 8, 727 (1993).CrossRefGoogle Scholar
11Lees, M. R., Bourgault, D., Braithwaite, D., de Rango, P., Lejay, P., Sulpice, A., and Tournier, R., Physica C 191, 414 (1992).CrossRefGoogle Scholar
12Hannay, C., Cloots, R., and Ausloos, M., Solid State Commun. 83, 349 (1992).CrossRefGoogle Scholar
13Cloots, R., Rulmont, A., Hannay, C., Godelaine, P. A., Vanderschueren, H. W., Régnier, P., and Ausloos, M., Appl. Phys. Lett. 61, 2718 (1992).CrossRefGoogle Scholar
14Chen, F., Markiewicz, R. S., and Giessen, B. C., in Superconductivity and Applications, edited by Kwok, H.S., Kao, Y-H., and Shaw, D. T. (Plenum Press, New York and London, 1989), p. 541.Google Scholar
15Stassen, S., Cloots, R., Rulmont, A., and Ausloos, M., unpublished.Google Scholar
16Laxmi Narsaiah, E., Subba Rao, U.V., Peña, O., and Perrin, C., Solid State Commun. 83(9), 689 (1992).CrossRefGoogle Scholar
17Nagata, A., Lu, X., Sugawara, K., and Kamada, S., Physica C (in press).Google Scholar
18Arrasmith, S. R., Kramer, M. J., Merkle, B. D., Holesinger, T. G., and McCallum, R.W., J. Mater. Res. 8, 1247 (1993).CrossRefGoogle Scholar
19Hasegawa, T., Kobayashi, H., Kumakura, H., Kitaguchi, H., and Togano, K., in Proc. 5th Int. Symp. on Superconductivity (ISS 92), edited by Bando, Y. and Yamauchi, M. (Springer-Verlag, Tokyo, 1993), p. 737.Google Scholar
20Cross, M. C. and Hohenberg, P. C., Rev. Mod. Phys. 65, 851 (1993).CrossRefGoogle Scholar
21Claus, H., Gebhard, U., Linker, G., Röhberg, K., Riedling, S., Franz, J., Ishida, T., Erb, A., Müller-Vogt, G., and Wühl, H., Physica C 200, 271 (1992).CrossRefGoogle Scholar
22Zhang, X. F., Van Tendeloo, G., Ge, S. L., Emmen, J.H.P.M., and Brabers, V.A.M., Physica C 215, 39 (1993).CrossRefGoogle Scholar
23Lees, M. R., Bourgault, D., de Rango, P., Lejay, P., Sulpice, A., and Tournier, R., Philos. Mag. B 65, 1395 (1992).CrossRefGoogle Scholar