Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T14:02:03.555Z Has data issue: false hasContentIssue false

Low-temperature preparation of dense 10 mol%-Y2O3-doped CeO2 ceramics using powders synthesized via carbonate coprecipitation

Published online by Cambridge University Press:  31 January 2011

Yarong Wang*
Affiliation:
Eco-materials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
Toshiyuki Mori
Affiliation:
Eco-materials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
Ji-Guang Li
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
Takayasu Ikegami
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
Yoshiyuki Yajima
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A carbonate coprecipitation method was used for the facile synthesis of highly reactive 10 mol%-Y2O3-doped CeO2 (20YDC) nanopowders, employing nitrates as the starting salts and ammonium hydrogen carbonate (AHC) as the precipitant. The AHC/RE3+ (RE = Ce + Y) molar ratio (R) and the reaction temperature (T) significantly affect the final yield and precursor properties, including chemical composition and particle morphology. Suitable processing conditions are T = 60 °C and R = 2.5 to 10, under which precipitation is complete, and the resultant precursors show ultrafine particle size, spherical particle shape, and good dispersion. The thus-processed precursors are basic carbonates with an approximate formula of Ce0.8Y0.2(OH)CO3 · 2H2O, which directly yield oxide solid solutions upon thermal decomposition at a very low temperature of approximately 400 °C. The 20YDC solid-solution powders calcined at 700 °C show excellent reactivity and were densified to >99% of theoretical via pressureless sintering at a very low temperature of 950 °C for 6 h.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Balducci, G., Kaspar, J., Fornasiero, P., Graziani, M., Islam, M.S., and Gale, J.D., J. Phys. Chem. B 101, 1750 (1997).CrossRefGoogle Scholar
2.Yao, H.C. and Yao, Y.F., J. Catal. 86, 254 (1984).CrossRefGoogle Scholar
3.Palmqvist, A.E.C., Zwinkels, M.F.M., Zhang, Y., Jaras, S.G., and Muhammed, M., Nanostruct. Mater. 8, 801 (1997).CrossRefGoogle Scholar
4.Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
5.Etsell, T.H. and Flengas, S.N., Chem. Rev. 70, 339 (1970).CrossRefGoogle Scholar
6.Steele, B.C.H., Middleton, P.H., and Rudkin, R.A., Solid State Ionics 40–41, 388 (1990).CrossRefGoogle Scholar
7.Chen, P-L. and Chen, I-W., J. Am. Ceram. Soc. 76, 1577 (1993).CrossRefGoogle Scholar
8.Chen, P-L. and Chen, I-W., J. Am. Ceram. Soc. 79, 3129 (1996).CrossRefGoogle Scholar
9.Li, J-G., Ikegami, T., Lee, J-H., and Mori, T., Acta Mater. 49, 419 (2001).CrossRefGoogle Scholar
10.Yahiro, H., Eguchi, K., and Arai, H., Solid State Ionics 36, 71 (1989).CrossRefGoogle Scholar
11.Kudo, T. and Obayashi, H., J. Electrochem. Soc. 122, 142 (1975).CrossRefGoogle Scholar
12.Hertle, J.V., Horita, T., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., Ceram. Int. 24, 229 (1998).CrossRefGoogle Scholar
13.Higashi, K., Sonoda, K., Ono, H., Sameshita, S., and Hirata, Y., J. Mater. Res. 14, 957 (1999).CrossRefGoogle Scholar
14.Dragoo, A.L. and Dominggues, L.P., J. Am. Ceram. Soc. 65, 253 (1982).CrossRefGoogle Scholar
15.Aiken, B., Hsu, W.P., and Matijevic, E., J. Am. Ceram. Soc. 71, 845 (1988).CrossRefGoogle Scholar
16.Yamashita, K., Ramanujachary, K.V., and Greenblatt, M., Solid State Ionics 81, 53 (1995).CrossRefGoogle Scholar
17.Huang, W., Shuk, P., and Greenblatt, M., Chem. Mater. 9, 2240 1997.CrossRefGoogle Scholar
18.Markmann, J., Tschope, A., and Birringer, R., Acta Mater. 50, 1433 (2002).CrossRefGoogle Scholar
19.Wang, Y., Mori, T., Li, J-G., Ikegami, T., J. Am. Ceram. Soc. 85, 3105 (2002).CrossRefGoogle Scholar
20.Li, J-G., Ikegami, T., Mori, T., and Wada, T., Chem. Mater. 13, 2913 (2001).CrossRefGoogle Scholar
21.Li, J-G., Ikegami, T., Mori, T., and Wada, T., Chem. Mater. 13, 2921 (2001).CrossRefGoogle Scholar
22.Williams, D.E., Ames Lab. Rep. IS-1052 (U.S.D.O.E., Iowa State University, Ames, IA, 1964).Google Scholar
23.Ryabchikov, D.I. and Terentyeva, E.A., in Progress in the Science and Technology of the Rare Earth, edited by Eyring, L. (Pergamon Press, New York, 1964), p. 139.Google Scholar
24.Head, E.L. and Holly, C.E., Jr., in Rare Erath Research II, edited by Vorres, K.S. (Gordon and Breach, London, U.K., 1964), p. 51.Google Scholar
25.Akinc, M. and Sordelet, D., Adv. Ceram. Mater. 2, 232 (1987).CrossRefGoogle Scholar
26.Wang, H-C. and Lu, C-H., Mater. Res. Bull. 37, 783 (2002).CrossRefGoogle Scholar
27.Powder Diffraction File No. 34–0394 (International Centre for Diffraction Data, Newton Square, PA, 1992).Google Scholar
28.Wada, H. and Kinoshita, S., Bull. Chem. Soc. Jpn. 52, 428 (1979).Google Scholar
29.Herring, C., J. Appl. Phys. 21, 301 (1950).CrossRefGoogle Scholar
30.Brook, R.J., J. Am. Ceram. Soc. 52, 56 (1969).CrossRefGoogle Scholar
31.Lange, F.F., J. Am. Ceram. Soc. 72, 3 (1989).CrossRefGoogle Scholar
32.Zhou, Y-C. and Rahaman, M.N., Acta Mater. 45, 3635 (1997).CrossRefGoogle Scholar