Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:15:39.339Z Has data issue: false hasContentIssue false

Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and x-ray diffraction investigations

Published online by Cambridge University Press:  26 July 2012

J. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
B. Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
J.Y. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and x-ray diffraction (XRD) investigations were conducted on the hot-pressed Ti2SnC bulk ceramic. Microstructure features of bulk Ti2SnC ceramic were characterized by using TEM, and a needle-shaped β-Sn precipitation was observed inside Ti2SnC grains with the orientation relationship: (0001) Ti2SnC // (200) Sn and Ti2SnC // [001] Sn. With the combination of DSC and XRD analyses, the precipitation of metallic Sn was demonstrated to be a thermal stress-induced process during the cooling procedure. The reheating temperature, even as low as 400 °C, could trigger the precipitation of Sn from Ti2SnC, which indicated the low-temperature instability of Ti2SnC. A substoichiometry Ti2SnxC formed after depletion of Sn from ternary Ti2SnC phase. Under electron beam irradiation, metallic Sn was observed diffusing back into Ti2SnxC. Furthermore, a new Ti7SnC6 phase with the lattice constants of a = 0.32 and c = 4.1 nm was identified and added in the Ti-Sn-C ternary system.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jeitschko, W., Nowotny, H., Benesovsky, F.: Carbon containing ternary compounds (H-phase). Monatsh. Chem. 94, 672 1963CrossRefGoogle Scholar
2.Barsoum, M.W., Yaroschuk, G., Tyagi, S.: Fabrication and characterization of M2SnC (M=Ti, Zr, Hf and Nb). Scr. Mater. 37, 1583 1997CrossRefGoogle Scholar
3.El-Raghy, T., Chakraborty, S., Barsoum, M.W.: Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr). J. Eur. Ceram. Soc. 20, 2619 2000CrossRefGoogle Scholar
4.Wu, J.Y., Zhou, Y.C., Yan, C.K.: Mechanical and electrical properties of Ti2SnC dispersion-strengthened copper. Z. Metallkd. 96, 847 2005CrossRefGoogle Scholar
5.Emmerlich, J., Eklund, P., Rittrich, D., Högberg, H., Hultman, L.: Electrical resistivity of Tin+1ACn (A = Si, Ge, Sn, n = 1–3) thin films. J. Mater. Res. 22, 2279 2007CrossRefGoogle Scholar
6.Zhou, Y.C., Dong, H.Y., Wang, X.H.: High-temperature oxidation behavior of a polycrystalline Ti2SnC ceramic. Oxid. Met. 61, 365 2004CrossRefGoogle Scholar
7.Vincent, H., Vincent, C., Mentzen, B.F., Pastor, S., Bouix, J.: Chemical interaction between carbon and titanium dissolved in liquid tin: Crystal structure and reactivity of Ti2SnC with Al. Mater. Sci. Eng., A 256, 83 1998CrossRefGoogle Scholar
8.Li, J.T., Miyamoto, Y.: Fabrication of monolithic Ti3SiC2 ceramic through reactive sintering of Ti/Si/2TiC. J. Mater. Synth. Process. 7, 91 1999CrossRefGoogle Scholar
9.Yang, S.L., Sun, Z.M., Hasimoto, H.: Reaction in Ti3SiC2 powder synthesis from a Ti–Si–TiC powder mixture. J. Alloys Compd. 368, 312 2004CrossRefGoogle Scholar
10.Li, S.B., Bei, G.P., Zhai, H.X., Zhou, Y.: Bimodal microstructure and reaction mechanism of Ti2SnC synthesized by a high-temperature reaction using Ti/Sn/C and Ti/Sn/TiC powder compacts. J. Am. Ceram. Soc. 89, 3617 2006CrossRefGoogle Scholar
11.Zhou, Y.C., Dong, H.Y., Wang, X.H., Yan, C.K.: Preparation of Ti2SnC by solid-liquid reaction synthesis and simultaneous densification method. Mater. Res. Innovations 6, 219 2002CrossRefGoogle Scholar
12.Zhou, Y.C., Dong, H.Y., Yu, B.H.: Development of two-dimensional titanium tin carbide (Ti2SnC) plates based on the electronic structure investigation. Mater. Res. Innovations 4, 36 2000CrossRefGoogle Scholar
13.Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., Wang, J.Y.: Microstructural characterization of layered ternary Ti2AlC. Acta Mater. 54, 1009 2006CrossRefGoogle Scholar
14.Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., Wang, J.Y.: Atomic scale characterization of layered ternary Cr2AlC ceramic. J. Appl. Phys. 99, 076109 2006CrossRefGoogle Scholar
15.Pennycook, S.J., Boatner, L.A.: Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565 1988CrossRefGoogle Scholar
16.Nabaroo, F.R.N.: Dislocations in Crystals, Vol. 7 Oxford North-Holland 1979 466Google Scholar
17.Fletcher, N.H., Adamson, P.L.: Structure and energy of crystal interfaces. Philos. Mag. 14, 99 1966CrossRefGoogle Scholar
18.Dubois, S., Cabioc’h, T., Chartier, P., Gauthier, V., Jaouen, M.: A new ternary nanolaminate carbide: Ti3SnC2. J. Am. Ceram. Soc. 90, 2642 2007CrossRefGoogle Scholar
19.Palmquist, J.P., Li, S., Persson, P.O.A., Emmerlich, J., Wilhelmsson, O., Högberg, H., Katsnelson, M.I., Johansson, B., Ahuja, R., Eriksson, O., Hultman, L., Jansson, U.: Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations. Phys. Rev. B: Condens. Matter 70, 165401 2004CrossRefGoogle Scholar
20.Zhou, Y.C., Meng, F.L., Zhang, J.: New MAX-phase compounds in the V-Cr-Al-C system. J. Am. Ceram. Soc. 91, 1357 2008CrossRefGoogle Scholar
21.Etzkorn, J., Ade, M., Hillbrecht, H.: Ta3AlC2 and Ta4AlC3-single crystal investigation of two ternary carbides of tantalum synthesized by the molten metal technique. Inorg. Chem. 46, 1410 2007CrossRefGoogle ScholarPubMed
22.Barsoum, M.W., El-Raghy, T., Rawn, C.J., Porter, W.D., Wang, H., Payzant, E.A., Hubbard, C.R.: Thermal properties of Ti3SiC2. J. Phys. Chem. Solids 60, 429 1999CrossRefGoogle Scholar
23.Emmerlich, J., Music, D., Eklund, P., Wilhekmsson, O., Jansson, U., Schneider, J.M., Högberg, H., Hultman, L.: Thermal stability of Ti3SiC2 thin films. Acta Mater. 55, 1479 2007CrossRefGoogle Scholar
24.Zhang, J., Wang, J.Y., Zhou, Y.C.: Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu-Ti3AlC2 composites. Acta Mater. 55, 4381 2007CrossRefGoogle Scholar
25.Sun, Z., Zhou, J., Music, D., Ahuja, R., Schneider, J.M.: Phase stability of Ti3SiC2 at elevated temperatures. Scr. Mater. 54, 105 2006CrossRefGoogle Scholar
26.Dong, H.Y., Yan, C.K., Chen, S.Q., Zhou, Y.C.: Solid-liquid reaction synthesis and thermal stability of Ti2SnC powders. J. Mater. Chem. 11, 1402 2001CrossRefGoogle Scholar
27.Copeland, L.E., Bragg, R.H.: Quantitative x-ray diffraction analysis. Anal. Chem. 30, 196 1958CrossRefGoogle Scholar
28.Herring, C., Galt, J.K.: Elastic and plastic properties of very small metal specimens. Phys. Rev. 85, 1060 1952CrossRefGoogle Scholar
29.Sears, G.W.: A mechanism of whisker growth. Acta Metall. 3, 367 1955CrossRefGoogle Scholar
30.Tu, K.N., Thompson, R.D.: Kinetics of interfacial reaction in bimetallic Cu-Sn thin films. Acta Metall. 30, 947 1982CrossRefGoogle Scholar
31.Tu, K.N., Li, J.C.M.: Spontaneous whisker growth on lead-free solder finishes. Mater. Sci. Eng., A 409, 131 2005CrossRefGoogle Scholar
32.Barsoum, M.W., Farber, L.: Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN. Science 284, 937 1999CrossRefGoogle ScholarPubMed
33.Sun, Z.M., Gupta, S., Ye, H.H., Barsoum, M.W.: Spontaneous growth of the freestanding Ga nanoribbons from Cr2GaC surfaces. J. Mater. Res. 20, 2618 2005CrossRefGoogle Scholar
34.Barsoum, M.W., Hoffman, E.N., Doherty, R.D., Gupta, S., Zavalingos, A.: Driving force and mechanism for spontaneous metal whisker formation. Phys. Rev. Lett. 93, 206104 2004CrossRefGoogle ScholarPubMed
35.Wang, J.Y., Zhou, Y.C., Liao, T., Zhang, J., Lin, Z.J.: A first-principles investigation of the phase stability of Ti2AlC with Al vacancies. Scr. Mater. 58, 227 2008CrossRefGoogle Scholar
36.Wang, X.H., Zhou, Y.C.: High-temperature oxidation behavior of Ti2AlC in air. Oxid. Met. 59, 303 2003CrossRefGoogle Scholar
37.Liu, B., Wang, J.Y., Zhang, J., Wang, J.M., Li, F.Z., Zhou, Y.C.: unpublished work.Google Scholar