Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T05:59:42.771Z Has data issue: false hasContentIssue false

Low temperature phase separation in CeSi1.86

Published online by Cambridge University Press:  31 January 2011

R. Madar
Affiliation:
INPG, ENSPG, URA 1109 CNRS, BP 46, 38402 St. Martin d'Hères, France
E. Houssay
Affiliation:
INPG, ENSPG, URA 1109 CNRS, BP 46, 38402 St. Martin d'Hères, France
A. Rouault
Affiliation:
INPG, ENSPG, URA 1109 CNRS, BP 46, 38402 St. Martin d'Hères, France
J. P. Senateur
Affiliation:
INPG, ENSPG, URA 1109 CNRS, BP 46, 38402 St. Martin d'Hères, France
B. Lambert
Affiliation:
Laboratoire de Cristallographie, CNRS 166X, 38402 Grenoble, France
C. Meneau d'Anterroches
Affiliation:
CNET, CNS, BP 98, 38243 Meylan, France
J. Pierre
Affiliation:
Laboratoire Louis Néel, CNRS 166X, 38402 Grenoble, France
O. Laborde
Affiliation:
CRTBT, CNRS 166X, 38402 Grenoble, France
J. L. Soubeyroux
Affiliation:
Institut Laue Langevin, 38402 Grenoble, France
J. Pelissier
Affiliation:
CENG, BP 85X, 38041 Grenoble, France
Get access

Abstract

Samples of CeSi1.86 which exhibit Kondo behavior are shown by neutron powder diffraction and transmission electron microscopy to consist of two closely related tetragonal phases. The primary phase is of the ThSi2 structure type with some vacancies in the silicon sublattice. The second phase presents an ordering of these vacancies. These two phases coexist at low temperature, but the abundance of the second phase increases with decreasing temperature. Neutron diffraction measurements and TEM experiments show that the phase separation occurs reversibly around 260 K, in close relation with an anomaly in the transport properties. The presence of a hysteresis indicates that we are dealing with a first order transition.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murarka, S., Silicides for VLSI Application (Academic Press, New York, 1983) and references therein.Google Scholar
2d'Heurle, F. M., Petersson, C. S., and Tsai, M. Y., J. Appl. Phys. 51, 5976 (1980).Google Scholar
3Tu, K. N., Thompson, R. D., and Tsaur, B. Y., Appl. Phys. Lett. 38, 626 (1981).CrossRefGoogle Scholar
4Norde, H., de Sousa Pires, J., d'Heurle, F. M., Pesavento, F., and Tove, P. A., Appl. Phys. Lett. 38, 865 (1981).CrossRefGoogle Scholar
5Gladyshevsky, E. I., Crystal Chemistry of Silicides and Germanides (Metallurgya, 1971).Google Scholar
6Parthe, E., Colloq. Intern. CNRS 157, 195 (1967).Google Scholar
7Houssay, E., Rouault, A., Thomas, O., Madar, R., and Senateur, J. P., Appl. Surf. Sci. 38, 156 (1989).Google Scholar
8Dijkman, W. H., Moleman, A. C., Kesseler, E., De Boer, F. R., and de Châtel, P. F., Valence Instabilities, edited by Wachter, P. and Boppart, H. (North-Holland Publishing Company, 1982), p. 515. See also W. H. Dijkman, Ph. D. Thesis, Amsterdam (1982).Google Scholar
9Satoh, T., Yashima, H., and Mori, H., Valence Instabilities, edited by Wachter, P. and Boppart, H. (North-Holland Publishing Company, 1982), p. 533.Google Scholar
10Sato, N., Mori, H., Yashima, H., and Satoh, T., Solid State Commun. 51, 139 (1984).CrossRefGoogle Scholar
11Sato, N., Sera, M., Toriznka, K., Kohgi, M., Sawada, A., and Satoh, T., Jpn. J. Appl. Phys. 26, 557 (1987).CrossRefGoogle Scholar
12Sato, N., Mori, H., Satoh, T., Miura, T., and Takei, H., J. Phys. Soc. Jpn. 57, 1384 (1988).Google Scholar
13Hippert, F., Hennion, B., Chui, F. L., Kohgi, M., and Satoh, J., J. M. M. M. 7677, 47 (1988).Google Scholar
14Koghi, M., Hippert, F., Regnault, L. P., Rossat-Mignot, J., Hennion, B., Satoh, T., Chui, F. L., Miura, T., and Takzi, H., Jpn. J. Appl. Phys. 26, 559 (1987).Google Scholar
15Lee, W. H., Shelton, R. N., Dhar, S. K., and Gschneidner, K. A., Jr., Phys. Rev. B 35, 8523 (1987).CrossRefGoogle Scholar
16Dhar, S. K., Gschneidner, K. A., Jr., Lee, W. H., Klavins, P., and Shelton, R. N., Phys. Rev. B 36, 341 (1987).CrossRefGoogle Scholar
17Pierre, J., Laborde, O., Houssay, E., Rouault, A., Senateur, J. P., and Madar, R., to appear in J. Phys. Cond. Mat. (1990).Google Scholar
18Gschneidner, K. A., Jr., Lee, W. H., Damento, M. A., Tang, J., Cook, B. A., Shinar, J., Dehner, B., and Shelton, R. N., Phys. Rev. B 39, 2099 (1989).Google Scholar
19Thomas, O., Senateur, J. P., Madar, R., Laborde, O., and Rosencher, E., Solid State Commun. 55, 629 (1985).Google Scholar
20Wade, R. H. and Pelissier, J., Ultra Microscopy 10, 285 (1982)Google Scholar
21Okazaki, A. and Lowde, R. D., Solid State Commun. 43, 503 (1982)Google Scholar