Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T19:10:04.675Z Has data issue: false hasContentIssue false

Low temperature growth and reliability of ferroelectric memory cell integrated on Si with conducting barrier stack

Published online by Cambridge University Press:  31 January 2011

A. M. Dhote
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
S. Madhukar
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
D. Young
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
T. Venkatesan
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
R. Ramesh
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
C. M. Cotell
Affiliation:
Surface Modification Branch, U.S. Naval Research Laboratory, Washington, DC 20375
Joseph M. Benedetto
Affiliation:
Army Research Laboratories, Adelphi, Maryland 20783
Get access

Abstract

Polycrystalline LSCO/PNZT/LSCO ferroelectric capacitor heterostructures were grown by pulsed laser deposition using a composite conducting barrier layer of Pt/TiN on poly-Si/Si substrate. The growth of the ferroelectric heterostructure is accomplished at a temperature in the range of 500–600 °C. This integration results in a 3-dimensional stacked capacitor-transistor geometry which is important for high density nonvolatile memory (HDNVM) applications. Transmission electron microscopy shows smooth substrate-film and film-film interfaces without any perceptible interdiffusion. The ferroelectric properties and reliability of these integrated capacitors were studied extensively at room temperature and 100 °C for different growth temperatures. The capacitors exhibit excellent reliability, both at room temperature and at elevated temperatures, making them very desirable for HDNVM applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jones, R. E., Jr., Maniar, P. D., Olowolafe, J. O., Campbell, A. C., and Mogab, C. J., Appl. Phys. Lett. 60, 1022 (1992).CrossRefGoogle Scholar
2.Nakao, Y., Nakamura, T., Kamisawa, A., and Takasu, H., in Proceedings of Sixth International Symposium Integrated Ferroelectrics, Monterey, CA, edited by Taylor, G. W. (Overseas Publishers Association, Amsterdam, 1994), pp. 2334.Google Scholar
3.Ramesh, R., Lee, J., Sands, T., Keramidas, V. G., and Auciello, O., Appl. Phys. Lett. 64, 2511 (1994).CrossRefGoogle Scholar
4.Dhote, A. M., Madhukar, S., Wei, W., Venkatesan, T., Ramesh, R., and Cotell, C. M., Appl. Phys. Lett. 68, 1 (1996).CrossRefGoogle Scholar
5.Araujo, C. A., McMillan, L. D., Melnick, B. M., Cuchiaro, J. D., and Scott, J. F., Ferroelectrics 104, 241 (1990).CrossRefGoogle Scholar
6.Chen, X., Kingon, A. I., Al-Shareef, H. N., Bellur, K. R., Gifford, K., and Auciello, O., in Proceedings of Sixth International Symposium Integrated Ferroelectrics, Monterey, CA, edited byTaylor, G. W. (Overseas Publishers Association, Amsterdam, 1994), p. 291.Google Scholar
7.Bondurant, D. and Grandinger, F., IEEE Spectrum, July, p. 30 (1989).CrossRefGoogle Scholar
8.Evans, J. T. and Womack, R., IEEE Solid State Circuits 23, 1171 (1988).CrossRefGoogle Scholar
9.Lee, J., Ramesh, R., Keramidas, V. G., and Fork, D.K., in Proceedings of Sixth International Symposium Integrated Ferroelectrics, Monterey, CA, edited by Taylor, G. W. (Overseas Publishers Association, Amsterdam, 1994), pp. 3544.Google Scholar
10.Okuyama, I. M. and Hamakawa, Y., Int. J. Eng. Sci. 29 (3), 391 (1991).CrossRefGoogle Scholar
11.Evans, J. T. and Womack, R. D., IEEE J. Solid State Circuits 23, 1171 (1988).CrossRefGoogle Scholar
12.Sinharoy, S., Buhay, H., Lampe, D. R., and Francombe, M. H., J. Vac. Sci. Technol. A 10, 1554 (1992).CrossRefGoogle Scholar
13.Dat, R., Lichtenwalner, D. J., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 64, 2673 (1994).CrossRefGoogle Scholar
14.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989); M. Sayer and K. Srinivas, ibid 247, 1056 (1990); G. H. Haertling, J. Vac. Sci. Technol. 9, 414 (1991).CrossRefGoogle Scholar
15.Wei, W., Dhote, A. M., and Ramesh, R., Integrated Ferroelectrics (1996).Google Scholar
16.Dey, S. K. and Zuleeg, R., Ferroelectrics 108, 37 (1990).CrossRefGoogle Scholar
17.Cheung, J. T., Morgan, P. E. D., Lowndes, D. H., Zheng, X. Y., and Breen, J., Appl. Phys. Lett. 62, 2045 (1993).CrossRefGoogle Scholar
18.Cheung, J. T., Morgan, P. E. D., Neugaonkar, R., and Goorski, M., Integrated Ferroelectrics 3, 147 (1993).CrossRefGoogle Scholar
19.Eom, C. B., van Dover, R. B., Phillips, J. M., Werder, D. J., Marshall, J. H., Cheu, C. H., Cava, R. J., Fleming, R. M., and Fork, D. K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
20.Bernstein, S. D., Wong, T. Y., Kisler, Y., and Tustison, R. W., J. Mater. Res. 8, 12 (1993).CrossRefGoogle Scholar
21.Ramesh, R., Sands, T., and Keramidas, V. G., Appl. Phys. Lett. 63, 731 (1993).CrossRefGoogle Scholar
22.Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, J. M., van Dover, R. B., Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F., Science 258, 1766 (1992).CrossRefGoogle Scholar
23.Nicolet, M. A., Thin Solid Films 52, 415 (1978).CrossRefGoogle Scholar
24.Olowolafe, J. O., Li, J., and Mayer, J. W., J. Appl. Phys. 68, 6207 (1990).CrossRefGoogle Scholar
25.Ho, P. S., Thin Solid Films 96, 301 (1982).CrossRefGoogle Scholar