Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T11:29:22.420Z Has data issue: false hasContentIssue false

Liquid mediated growth and the bimodal microstructure of YBa2Cu3O7−δ films made by the ex situ conversion of physical vapor deposited BaF2 precursors

Published online by Cambridge University Press:  03 March 2011

T.G. Holesinger*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P.N. Arendt
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. Feenstra
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
A.A. Gapud
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
E.D. Specht
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D.M. Feldmann
Affiliation:
University of Wisconsin, Madison, Wisconsin 53706
D.C. Larbalestier
Affiliation:
University of Wisconsin, Madison, Wisconsin 53706
*
a)Address all corrrespondence to this author. e-mail: [email protected]
Get access

Abstract

YBa2Cu3Oy (YBCO) films produced by the ex situ conversion of BaF2-based precursors deposited by physical vapor deposition on ion-beam assisted deposited (IBAD) yttrium-stabilized zirconia (YSZ) and rolling-assisted biaxially textured substrates (RABiTS) templates are characterized by a bi-axially aligned, laminar grain structure that results from the anisotropic growth characteristics of the YBCO phase and its precipitation from a transient liquid phase during the conversion process. A bimodal microstructure characterizes these films and is defined by large, well-formed YBCO grains with Y2O3 precipitates in the bottom region of the film and small YBCO grains with a high density of stacking faults in the upper half. Ba2Cu3Oy or Ba–O–F/CuO second phase layers were often found between large YBCO grains in the bottom half of the films. YBCO grain sizes exceeded 50 μm within the plane of the film in some cases. Conversely, discrete secondary phases of Y2Cu2O5, Y2O3, and Ba2Cu3Oy/Ba–O–F could be found among the much smaller YBCO grains in the top portion of the bimodal structure. The dividing line of the bimodal structure was generally at one half of the film thickness, although exceptions to this trend were found. The highest critical current densities (Jc) and best film alignments for a given film thickness were found in samples where the layers of Ba2Cu3Oy or Ba–O–F were minimized or eliminated from the films. Samples quenched after partial conversion show the segregation of CuO to the top region of the film and the lateral growth of large YBCO grains from a precursor mix of Y2Cu2O5 and Ba–O–F. The data demonstrate that transient liquid phases are part of the conversion process of BaF2-based YBCO films. The control of both CuO segregation and the amount of liquid phases generated during the initial stages of phase formation is needed for optimizing the ex situ conversion process for high-Jc coated conductors.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Malozemoff, A.P., Annavarapu, S., Fritzemeier, L.G., Li, Q., Prunier, V., Rupich, M.W., Thieme, C., Zhang, W., Goyal, A., Paranthaman, M. and Lee, D.F.: Low-cost YBCO coated conductor technology. Supercond. Sci. Technol. 13, 473 (2000).Google Scholar
2.Iijima, Y., Tanabe, N., Kohno, O. and Ikeno, Y.: In-plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769 (1992).Google Scholar
3.Reade, R.P., Berdahl, P., Russo, R.E. and Garrison, S.M.: Laser deposition of biaxially textured yttria-stabilized zirconia buffer layers on polycrystalline metallic alloys for high critical current Y–Ba–Cu–O thin films. Appl. Phys. Lett. 61, 2231 (1992).Google Scholar
4.Wu, X.D., Foltyn, S.R., Arendt, P., Townsend, J., Adams, C., Campbell, I.H., Tiwari, P., Coulter, Y. and Peterson, D.E.: High current YBa2Cu3O7−∂ thick films on flexible nickel substrates with textured buffer layers. Appl. Phys. Lett. 65, 1961 (1994).Google Scholar
5.Hasegawa, K., Fujino, K., Mukai, H., Konishi, M., Hayashik, K., Sata, K., Honjo, S., Sato, Y., Ishii, H. and Iwata, Y.: Biaxially aligned YBCO film tapes fabricated by all pulsed laser deposition. Appl. Supercond. 4, 487 (1998).Google Scholar
6.Bauer, M., Semerad, R. and Kinder, H.: YBCO films on metal substrates with biaxially aligned MgO buffer layers. IEEE Trans. Appl. Supercond. 9, 1502 (1999).Google Scholar
7.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E. and Sikka, V.K.: High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
8.Mathis, J.E., Goyal, A., Lee, D.F., List, F.A., Paranthanman, M., Christen, D.K., Specht, E.D., Kroeger, D.M. and Martin, P.M.: Biaxially textured YBa2Cu3O7−∂ conductors on rolling assisted biaxially textured substrates with critical current densities of 2– 3 MA/cm2. Jpn. J. Appl. Phys. 37 L1379 (1998).Google Scholar
9.Rupich, M.W., Schoop, U., Verebelyi, D.T., Thieme, C., Zhang, W., Li, X., Kodenkandath, T., Nguyen, N., Siegal, E., Buczek, D., Lynch, J., Jowett, M., Thompson, E., Wang, J-S., Scudiere, J., Malozemoff, A.P., Li, Q., Annavarapu, S., Cui, S., Fritzemeier, L., Aldrich, B., Craven, C., Niu, F., Schwall, R., Goyal, A. and Paranthaman, M.: YBCO-coated conductors by an MOD/RABiTS process. IEEE Trans. Appl. Supercond. 13, 2458 (2003).Google Scholar
10.Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C. and List, F.A.: Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): An approach to superconducting tapes with high critical current density. Science 274, 755 (1996).Google Scholar
11.Dimos, D., Chaudhari, P., Mannhart, J. and LeGoues, F.K.: Orientation dependence of grain-boundary critical currents in YBa2Cu3O7−δ bicrystals. Phys. Rev. Lett. 61, 219 (1988).Google Scholar
12.Heining, N.F., Redwing, R.D., Tsu, I. Fei, Gurevich, A., Nordman, J.E., Babcock, S.E. and Larbalestier, D.C.: Evidence for channel conduction in low misorientation angle [001] tilt YBa2Cu3O7−x bicrystal films. Appl. Phys. Lett. 69, 577 (1996).Google Scholar
13.Verebelyi, D.T., Cantoni, C., Budai, J.D., Christen, D.K., Kim, H.J. and Thompson, J.R.: Critical current density of YBa2Cu3O7−δ low-angle grain boundaries in self-field. Appl. Phys. Lett. 78, 2031 (2001).Google Scholar
14.Malozemoff, A.P., Verebelyi, D.T., Fleshler, S., Aized, D. and Yu, D.: HTS wire: Status and prospects. Physica C 386, 424 (2003).Google Scholar
15.Gupta, A., Jagannathan, R., Cooper, E.I., Giess, E.A., Landman, J.I. and Hussey, B.W.: Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 52, 2077 (1988).CrossRefGoogle Scholar
16.McIntyre, P.C., Cima, M.J. and Ng, M.F.: Metalorganic deposition of high-J c Ba2YCu3O7−x thin films from trifluoroacetate precursors onto (100) SrTiO3. J. Appl. Phys. 68, 4183 (1990).CrossRefGoogle Scholar
17.Feenstra, R., Lindemer, T.B., Budai, J.D. and Galloway, M.D.: Effect of oxygen pressure on the synthesis of YBa2Cu3O7−∂ thin films by post-deposition annealing. J. Appl. Phys. 69, 6569 (1991).Google Scholar
18.McIntyre, P.C. and Cima, M.J.: Heteroepitaxial growth of chemically derived ex situ Ba2YCu3O7−xthin films. J. Mater. Res. 9, 2219 (1994).Google Scholar
19.Smith, J.A., Cima, M.J. and Sonnenberg, N.: High critical current density thick MOD-derived YBCO films. IEEE Trans. Appl. Supercond. 9, 1531 (1999).Google Scholar
20.Solovyov, V.F., Wiesmann, H.J., Wu, L., Suenaga, M. and Feenstra, R.: High-rate deposition of 5 μm thick YBa2Cu3O7 films using the BaF2 ex-situ post annealing process. IEEE Trans. Appl. Supercond. 9, 1467 (1999).Google Scholar
21.Yamada, Y., Kim, S., Araki, T., Takahashi, Y., Yuasa, T., Kurosaki, H., Hirabayashi, I., Iijima, Y. and Takeda, K.: Critical current density and related microstructures of TFA-MOD YBCO coated conductors. Physica C 357–360, 1007 (2001).Google Scholar
22.Castano, O., Cavallaro, A., Palau, A., Gonzalez, J.C., Rossell, M., Puig, T., Sandiumenge, F., Mestres, N., Pinol, S., Pomar, A. and Obradors, X.: High quality YBa2Cu3O7 thin films grown by trifluoroacetates metalorganic deposition. Supercond. Sci. Technol. 16, 45 (2003).Google Scholar
23.Li, X., Rupich, M.W., Zhang, W., Nguyen, N., Kodenkandath, T., Schoop, U., Verebelyi, D.T., Thieme, C., Jowett, M., Arendt, P.N., Foltyn, S.R., Holesinger, T.G., Aytug, T., Christen, D.K. and Paranthaman, M.P.: High critical current MOD ex situ YBCO films on RABiTS and MgO-IBAD templates. Physica C 390, 249 (2003).CrossRefGoogle Scholar
24.Selvamanickam, V., Lee, H.G., Li, Y., Reeves, J., Qiao, Y., Xie, Y.Y., Lenseth, K., Carota, G., Funk, M., Zdun, K., Xie, J., Likes, K., Jones, M., Hope, L. and Hazelton, D.W.: Scale up of high performance Y–Ba–Cu–O coated conductors. IEEE Trans. Appl. Supercond. 13, 2492 (2003).Google Scholar
25.Donet, S., Weiss, F., Chaudouet, P., Beauquis, S., Abrutis, A., Freyhardt, H.C., Usokin, A., Selbmann, D., Eickemeyer, J., Jimenez, C., Bruzek, C.E. and Saugrain, J.M.: Reel-to-reel MOCVD for YBCO coated conductors. IEEE Trans. Appl. Supercond. 13, 2524 (2003).CrossRefGoogle Scholar
26.Foltyn, S.R., Arendt, P.N., Dowden, P.C., DePaula, R.F., Groves, J.R., Coulter, J.Y., Jia, Q., Maley, M.P. and Peterson, D.E.: High-T c coated conductors—performance of meter-long YBCO/IBAD flexible tapes. IEEE Trans. Appl. Supercond. 9, 1519 (1999).Google Scholar
27.Peng, L.S., Wang, W., Jo, W., Ohnishi, T., Marshall, A.F., Hammond, R.H., Beasley, M.R., Peterson, E.J. and Ericson, R.E.: In situ high rate growth of high temperature superconductor tapes. IEEE Trans. Appl. Supercond. 11, 3375 (2001).CrossRefGoogle Scholar
28.Jo, W., Ohnishi, T., Huh, J.U., Hammond, R.H. and Beasley, M.R.: Thickness dependence of critical currents and depth profiling of transport properties in high rate in-situ grown YBa2Cu3O7−x films. IEEE Trans. Appl. Supercond. 13, 2817 (2003).Google Scholar
29.Foltyn, S.R., Arendt, P.N., Jia, Q.X., Wang, H., MacManus-Driscoll, J.L., Kreiskott, S., DePaula, R.F., Stan, L., Groves, J.R. and Dowden, P.C.: Strongly coupled critical current density values achieved in Y1Ba2Cu3O7−8 coated conductors with near-single-crystal texture. Appl. Phys. Lett. 82, 4519 (2003).CrossRefGoogle Scholar
30.Wordenweber, R., Hollmann, E., Poltiasev, M. and Neumuller, H.W.: Low-pressure large-area magnetron sputter deposition of YBa2Cu3O7−δ films for industrial applications. Supercond. Sci. Technol. 16, 582 (2003).CrossRefGoogle Scholar
31.Bauer, M., Semerad, R., Kinder, H., Wiesman, J., Dzik, J. and Freyhardt, H.C.: Large area YBCO films on polycrystalline substrates with very high critical current densities. IEEE Trans. Appl. Supercond. 9, 2244 (1999).Google Scholar
32.Mankiewich, P.M., Scofield, J.H., Skocpol, W.J., Howard, R.E., Dayem, A.H. and Good, E.: Reproducible technique for fabrication of thin films of high transistion temperature superconductors. Appl. Phys. Lett. 51, 1753 (1987).Google Scholar
33.Izumi, T., Honjo, T., Tokunaga, Y., Fuji, H., Teranishi, R., Iijima, Y., Saitoh, T., Nakamura, Y. and Shiohara, Y.: High- Jc YBCO coated conductors by metal organic deposition method using trifluoroacetates. IEEE Trans. Appl. Supercond. 13, 2500 (2003).Google Scholar
34.McIntyre, P.C., Cima, M.J., Smith, J.A., Hallock, R.B., Siegal, M.P. and Phillips, J.M.: Effect of growth conditions on the properties and morphology of chemically derived epitaxial thin films of Ba2YCu3O7−x on (001) LaAlO3. J. Appl. Phys. 71, 1868 (1992).Google Scholar
35.Wu, L., Zhu, Y., Solovyov, V.F., Wiesmann, H.J., Moodenbaugh, A.R., Sabatini, R.L. and Suenaga, M.: Nucleation and growth of YBa2Cu3Ox on SrTiO3 and CeO2 by a BaF2 postdeposition reaction process. J. Mater. Res. 16, 2869 (2001).Google Scholar
36.Shibata, J., Honjo, T., Fuji, H., Araki, T., Hirabayashi, I., Hirayama, T., Izumi, T., Shiohara, Y., Yamamoto, T. and Ikuhara, Y.: Cyrstallization mechanism of Nd1+xBa2−xCu3O7−y and YBa2Cu3O7−y films deposited by metalorganic deposition method using trifluoroacetates. J. Mater. Res. 17, 1266 (2002).CrossRefGoogle Scholar
37.Solovyov, V.F., Wiesmann, H.J. and Suenaga, M.: Growth rate limiting mechanisms of YBa2Cu3O7 films manufactured by ex situ processing. Physica C 353, 14 (2001).Google Scholar
38.Honjo, T., Nakamura, Y., Teranishi, R., Fuji, H., Shibata, J., Izumi, T. and Shiohara, Y.: Growth mechanism of YBCO films in metal organic deposition method using trifluoroacetates. IEEE Trans. Appl. Supercond. 13, 2516 (2003).Google Scholar
39.Feldmann, D.M., Larbalestier, D.C., Feenstra, R., Gapud, A.A., Budai, J.D., Holesinger, T.G. and Arendt, P.N.: Through-thickness superconducting and normal-state transport properties revealed by thinning of thick film ex situ YBa2Cu3O7−x coated conductors. Appl. Phys. Lett. 83, 3951 (2003).Google Scholar
40.Castano, O., Cavallaro, A., Palau, A., Gonzalez, J.C., Rosell, M., Puig, T., Pinol, S., Mestres, N., Sandiumenge, F., Pomar, A. and Obradors, X.: Influence of porosity on the critical currents of trifluoroacetate-MOD YBa2Cu3O7 films. IEEE Trans. Appl. Supercond. 13, 2504 (2003).CrossRefGoogle Scholar
41.Feenstra, R. (unpublished).Google Scholar
42.Arendt, P.N., Foltyn, S.R., Groves, J.R., Depaula, R.F., Dowden, P.C., Roper, J.M. and Coulter, J.Y.: YBCO/YSZ coated conductors on flexible Ni alloy substrates. Appl. Supercond. 4, 429 (1996).Google Scholar
43.Cantoni, C., Christen, D.K., Feenstra, R., Goyal, A., Ownby, G.W., Zehner, D.M. and Norton, D.P.: Reflection high-energy electron diffraction studies of epitaxial oxide seed-layer growth on rolling-assisted biaxially textured substrate Ni(001): The role of surface structure and chemistry. Appl. Phys. Lett. 79, 3077 (2001).Google Scholar
44.Cliff, G. and Lorimer, G.W.: Quantitative analysis of thin specimens. J. Microsc. 103, 203 (1975).Google Scholar
45.Specht, E.D., Goyal, A., Lee, D.F., List, F.A., Kroeger, D.M., Paranthaman, M., Williams, R.K. and Christen, D.K.: Cube-textured nickel substrates for high-temperature superconductors. Supercond. Sci. Technol. 11, 945 (1998).Google Scholar
46.Malozemoff, A.P., private communication (2004).Google Scholar
47.Holesinger, T.G., Foltyn, S.R., Arendt, P.N., Kung, H., Jia, Q.X., Dickerson, R.M., Dowden, P.C., DePaula, R.F. and Coulter, J.Y.: The microstructure of continously processed YBa2Cu3Oy coated conductors with underlying CeO2 and IBAD YSZ Buffer Layers. J. Mater. Res. 15, 222 (2000).Google Scholar
48.Vanderah, T.A., Roth, R.S. and McMurdie, H.F.: Phase Diagrams for High Tc Superconductors II, 1st ed. (The American Ceramic Society, Westerville, OH, 1997), p. 278.Google Scholar
49.di Uccio, U. Scotti, Granzozio, F.M., Di Chiara, A., Tafuri, F., Lebedev, O.I., Verbist, K. and Van Tendeloo, G.: Phase competition between Y2BaCuO5 and Y2O3 precipitates in Y-rich YBCO thin films. Physica C 321, 162 (1999).Google Scholar
50.Jo, W., Peng, L.S-J., Wang, W., Ohnishi, T., Marshall, A.F., Hammond, R.H., Beasley, M.R. and Peterson, E.J.: Thermody-namic stability and kinetics of Y–Ba–Cu–O film growth at high rates in atomic and molecular oxygen. J. Cryst. Growth 225, 183 (2001).CrossRefGoogle Scholar
51.Yoshizumi, M., Seleznev, I. and Cima, M.J.: Reactions of oxyfluoride precursors for the preparation of barium yttrium cuprate films. Physica C 403, 191 (2004).Google Scholar
52.Wong-Ng, W., Cook, L.P., Suh, J., Levin, I., Vaudin, M., Feenstra, R., and Cline, J.P.: Phase relationships and phase formation in the system BaF2–BaO–Y2O3–CuOx–H2O, in Materials for High-Temperature Superconductor Technologies, edited by Paranthaman, M.P., Rupich, M.W., Salama, K., Mannhart, J., and Hasegawa, T. (Mater. Res. Soc. Symp. Proc. 689, Warrendale, PA, 2002), p. 337.Google Scholar
53.Holesinger, T.G., Feldmann, D.M., and Feenstra, R.: Development of Ex-situ processed, high-I c coated conductors, Superconductivity for Electric Systems 2004 Annual Peer Review, Washington, D.C., 2004.Google Scholar
54.Feenstra, R., Gapud, A.A., List, F.A., Specht, E.D., Christen, D.K., Holesinger, T.G. and Feldmann, D. M.: Critical currents I c(77K) > 350 A/cm-width achieved in ex situ YBCO coated conductors using a faster conversion process, IEEE Trans. Appl. Supercond. (2004, in press).+350+A/cm-width+achieved+in+ex+situ+YBCO+coated+conductors+using+a+faster+conversion+process,+IEEE+Trans.+Appl.+Supercond.+(2004,+in+press).>Google Scholar