Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T12:24:01.930Z Has data issue: false hasContentIssue false

Layer-by-layer, ultrasonic spray assembled 2D and 3D chemically crosslinked carbon nanotubes and graphene

Published online by Cambridge University Press:  05 January 2017

Sunny C. Patel
Affiliation:
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
Owais Alam
Affiliation:
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
Dongye Zhang
Affiliation:
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
Kartikey Grover
Affiliation:
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
Yi-Xian Qin
Affiliation:
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
Balaji Sitharaman*
Affiliation:
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Two- and three-dimensional assemblies of carbon nanomaterials such as carbon nanotubes and graphene are necessary to harness their remarkable physicochemical properties in many clean energy, electronics, and biomedical applications. Herein we report a facile, economical, and versatile method for layer-by-layer fabrication of chemically-crosslinked carbon nanomaterial assemblies by ultrasonic spray coating combined with radical-initiated crosslinking reaction. The chemical, surface, and mechanical properties of the carbon nanomaterial coatings were characterized by Raman spectroscopy, atomic force microscopy, scanning- and transmission-electron microscopy, and nano-dynamic mechanical analysis. Our results indicate that the macroscopic 2D assemblies of crosslinked carbon nanotubes or graphene nanoparticles have surface uniformity, are chemically-crosslinked, and are mechanically robust. We further provide proof-of-concept demonstration of fabricating free-standing, porous, 3D single-walled carbon nanotube structures. Taken together, the results opens avenues toward adapting our method to enable 3D printing or additive manufacturing of all-carbon nanomaterial structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gogotsi, Y. and Presser, V.: Carbon Nanomaterials (CRC Press, Boca Raton, 2013).Google Scholar
Dai, L., Chang, D.W., Baek, J.B., and Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small 8(8), 1130 (2012).Google Scholar
Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A.: Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611 (2010).Google Scholar
Feng, L. and Liu, Z.: Graphene in biomedicine: Opportunities and challenges. Nanomedicine 6(2), 317 (2011).Google Scholar
Dong, X., Wang, X., Wang, L., Song, H., Zhang, H., Huang, W., and Chen, P.: 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS App. Mater. Interfaces 4(6), 3129 (2012).Google Scholar
Kang, I., Schulz, M.J., Kim, J.H., Shanov, V., and Shi, D.: A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15(3), 737 (2006).Google Scholar
Wang, X., Zhi, L., and Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323 (2008).Google Scholar
Xu, H., Hu, L., Anlage, S.M., and Gruner, G.: Microwave shielding of transparent and conducting single-walled carbon nanotube films. Appl. Phys. Lett. 90, 183119 (2007).Google Scholar
Cao, M-S., Wang, X-X., Cao, W-Q., and Yuan, J.: Ultrathin graphene: Electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3(26), 6589 (2015).Google Scholar
Maiyalagan, T., Dong, X., Chen, P., and Wang, X.: Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. J. Mater. Chem. 22(12), 5286 (2012).CrossRefGoogle Scholar
Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L., Dai, J., Tang, M., and Cheng, G.: Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Scientific Rep. 3, 1604 (2013).Google Scholar
Huang, S.H., Liu, P., Mokasdar, A., and Hou, L.: Additive manufacturing and its societal impact: A literature review. Inter. J. Adv. Manuf. Technol. 67(5), 1191 (2012).Google Scholar
Le, L.T., Ervin, M.H., Qiu, H., Fuchs, B.E., and Lee, W.Y.: Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355 (2011).Google Scholar
Tölle, F.J., Fabritius, M., and Mülhaupt, R.: Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Funct. Mater. 22(6), 1136 (2012).Google Scholar
Kordás, K., Mustonen, T., Tóth, G., Jantunen, H., Lajunen, M., Soldano, C., Talapatra, S., Kar, S., Vajtai, R., and Ajayan, P.M.: Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2(8–9), 1021 (2006).Google Scholar
Small, W.R.: Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 3(9), 1500 (2007).Google Scholar
Wang, Y., Zheng, Y., Xu, X., Dubuisson, E., Bao, Q., Lu, J., and Loh, K.P.: Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 5(12), 9927 (2011).CrossRefGoogle ScholarPubMed
Obraztsov, A.N.: Chemical vapour deposition: Making graphene on a large scale. Nature Nanotechnol. 4(4), 212 (2009).Google Scholar
Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., and Hebard, A.F.: Transparent, conductive carbon nanotube films. Science 305(5688), 1273 (2004).Google Scholar
Tenent, R.C., Barnes, T.M., Bergeson, J.D., Ferguson, A.J., To, B., Gedvilas, L.M., Heben, M.J., and Blackburn, J.L.: Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 21(31), 3210 (2009).Google Scholar
Tait, J.G., Worfolk, B.J., Maloney, S.A., Hauger, T.C., Elias, A.L., Buriak, J.M., and Harris, K.D.: Spray coated high-conductivity PEDOT: PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol. Energy Mater. Sol. Cells 110, 98 (2013).Google Scholar
Pham, V.H., Cuong, T.V., Hur, S.H., Shin, E.W., Kim, J.S., Chung, J.S., and Kim, E.J.: Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48(7), 1945 (2010).Google Scholar
Ramasamy, E., Lee, W.J., Lee, D.Y., and Song, J.S.: Spray coated multi-wall carbon nanotube counter electrode for tri-iodide reduction in dye-sensitized solar cells. Electrochem. Commun. 10(7), 1087 (2008).Google Scholar
Nayak, T.R., Jian, L., Phua, L.C., Ho, H.K., Ren, Y., and Pastorin, G.: Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano 4(12), 7717 (2010).Google Scholar
Alver, U., Zhou, W., Belay, A.B., Krueger, R., Davis, K.O., and Hickman, N.S.: Optical and structural properties of ZnO nanorods grown on graphene oxide and reduced graphene oxide film by hydrothermal method. Appl. Surf. Sci. 258(7), 3109 (2012).Google Scholar
Steirer, K.X., Reese, M.O., Rupert, B.L., Kopidakis, N., Olson, D.C., Collins, R.T., and Ginley, D.S.: Ultrasonic spray deposition for production of organic solar cells. Sol. Energy Mater. Sol. Cells 93(4), 447 (2009).CrossRefGoogle Scholar
Kim, B.C., Jeong, H.T., Higgins, M.J., Yu, K.H., and Wallace, G.G.: Dynamic electrochemical properties of extremely stretchable electrochemical capacitor using reduced graphene oxide/single-wall carbon nanotubes composite. J. Electrochem. Soc. 162(12), A2351 (2015).Google Scholar
Tutak, W., Park, K.H., Vasilov, A., Starovoytov, V., Fanchini, G., Cai, S-Q., Partridge, N.C., Sesti, F., and Chhowalla, M.: Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks. Nanotechnology 20(25), 255101 (2009).Google Scholar
King, D., Quintana, M., Kratochvil, J., Ellibee, D., and Hansen, B.: Photovoltaic module performance and durability following long-term field exposure. Prog. Photovoltaics Res. Appl. 8(2), 241 (2000).Google Scholar
Lalwani, G., Kwaczala, A.T., Kanakia, S., Patel, S.C., Judex, S., and Sitharaman, B.: Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds. Carbon 53, 90 (2013).Google Scholar
Sivertz, C., Andrews, W., Elsdon, W., and Graham, K.: Mechanism of free radical attack on double bonds. J. Polym. Sci. 19(93), 587 (1956).Google Scholar
Patel, S.C., Lalwani, G., Grover, K., Qin, Y-X., and Sitharaman, B.: Fabrication and cytocompatibility of in situ crosslinked carbon nanomaterial films. Scientific Rep. 5, 10261 (2015).Google Scholar
Wang, W-N., Purwanto, A., Lenggoro, I.W., Okuyama, K., Chang, H., and Jang, H.D.: Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Ind. Eng. Chem. Res. 47(5), 1650 (2008).Google Scholar
Ozcivici, E., Ferreri, S., Qin, Y-X., and Judex, S.: Determination of Bone’s Mechanical Matrix Properties by Nanoindentation, in Osteoporosis (Springer, Berlin, 2008); p. 323.Google Scholar
Li, X. and Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48(1), 11 (2002).Google Scholar
Xiaodong, L., Hongsheng, G., Wally, A.S., Dongling, F., Xiaoyou, X., Michael, A.S., Anthony, P.R., and Michael, L.M.: Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15(11), 1416 (2004).Google Scholar
Xie, S.X., Gao, F., Patel, S.C., Booske, J.H., Hagness, S.C., and Sitharaman, B.: Effect of synthesis and acid purification methods on the microwave dielectric properties of single-walled carbon nanotube aqueous dispersions. Appl. Phys. Lett. 103(13), 133114 (2013).Google Scholar
Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47 (2005).CrossRefGoogle Scholar
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1), 47 (2007).Google Scholar
Gojny, F.H., Wichmann, M.H., Fiedler, B., and Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos. Sci. Technol. 65(15), 2300 (2005).Google Scholar
Suk, J.W., Kitt, A., Magnuson, C.W., Hao, Y., Ahmed, S., An, J., Swan, A.K., Goldberg, B.B., and Ruoff, R.S.: Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9), 6916 (2011).Google Scholar
Mattia, D., Rossi, M., Kim, B., Korneva, G., Bau, H., and Gogotsi, Y.: Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films. J. Phys. Chem. B 110(20), 9850 (2006).CrossRefGoogle ScholarPubMed
Franklin, N.R. and Dai, H.: An enhanced CVD approach to extensive nanotube networks with directionality. Adv. Mater. 12(12), 890 (2000).3.0.CO;2-K>CrossRefGoogle Scholar
Eda, G., Fanchini, G., and Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol. 3(5), 270 (2008).Google Scholar
Ci, L., Manikoth, S.M., Li, X., Vajtai, R., and Ajayan, P.M.: Ultrathick freestanding aligned carbon nanotube films. Adv. Mater. 19(20), 3300 (2007).Google Scholar
Jardret, V. and Morel, P.: Viscoelastic effects on the scratch resistance of polymers: Relationship between mechanical properties and scratch properties at various temperatures. Prog. Org. Coat. 48(2), 322 (2003).Google Scholar
Niinomi, M. and Nakai, M.: Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 836587 (2011).CrossRefGoogle ScholarPubMed
Agrawal, R., Nieto, A., Chen, H., Mora, M., and Agarwal, A.: Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites. ACS Appl. Mater. Interfaces 5(22), 12052 (2013).Google Scholar
Lahiri, D., Das, S., Choi, W., and Agarwal, A.: Unfolding the damping behavior of multilayer graphene membrane in the low-frequency regime. ACS Nano 6(5), 3992 (2012).Google Scholar
Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., and Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872 (2009).CrossRefGoogle ScholarPubMed
Hu, H., Zhao, B., Itkis, M.E., and Haddon, R.C.: Nitric acid purification of single-walled carbon nanotubes. J. Phys. Chem. B. 107(50), 13838 (2003).Google Scholar
Shi, Z., Lian, Y., Liao, F., Zhou, X., Gu, Z., Zhang, Y., and Iijima, S.: Purification of single-wall carbon nanotubes. Solid State Commun. 112(1), 35 (1999).Google Scholar
Hu, H., Zhao, Z., Wan, W., Gogotsi, Y., and Qiu, J.: Ultralight and highly compressible graphene aerogels. Adv. Mater. 25(15), 2219 (2013).Google Scholar
Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher, J.H., and Baumann, T.F.: Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067 (2010).Google Scholar
Bryning, M.B., Milkie, D.E., Islam, M.F., Hough, L.A., Kikkawa, J.M., and Yodh, A.G.: Carbon nanotube aerogels. Adv. Mater. 19(5), 661 (2007).Google Scholar
Bordjiba, T., Mohamedi, M., and Dao, L.H.: New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 20(4), 815 (2008).Google Scholar
Park, S.H. and Xia, Y.: Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv. Mater. 10(13), 1045 (1998).Google Scholar
Park, S-H., Kim, H-K., Yoon, S-B., Lee, C-W., Ahn, D., Lee, S-I., Roh, K.C., and Kim, K-B.: Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem. Mater. 27(2), 457 (2015).Google Scholar
Wang, Y. and Caruso, F.: Macroporous zeolitic membrane bioreactors. Adv. Funct. Mater. 14(10), 1012 (2004).Google Scholar
Xie, X., Hu, L., Pasta, M., Wells, G.F., Kong, D., Criddle, C.S., and Cui, Y.: Three-dimensional carbon nanotube− textile anode for high-performance microbial fuel cells. Nano Lett. 11(1), 291 (2010).Google Scholar
Murphy, W.L., Dennis, R.G., Kileny, J.L., and Mooney, D.J.: Salt fusion: An approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng. 8(1), 43 (2002).Google Scholar
Goenka, S., Sant, V., and Sant, S.: Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controlled Release 173, 75 (2014).Google Scholar
Graphene 3D Lab Inc: http://www.graphene3dlab.com/ (accessed November 16, 2016).Google Scholar