Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T10:15:05.584Z Has data issue: false hasContentIssue false

Lattice location and hardness of Ta-implanted Ni3Al

Published online by Cambridge University Press:  31 January 2011

Gary S. Was
Affiliation:
Institut für Schicht-und Ionentechnik, Kernforschungsanlage Jülich GmbH, D-5170, Jülich, Germany
Siegfried Mantl
Affiliation:
Institut für Schicht-und Ionentechnik, Kernforschungsanlage Jülich GmbH, D-5170, Jülich, Germany
Warren Oliver
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Implantation of Ta into single crystal Ni3Al was conducted to determine the degree of surface hardening in monolithic alloys in relation to its lattice location. Ta was implanted at 400 keV to doses of 0.07, 0.36, and 2.52 × 1016 cm−2 along the [100] axis of a [100] crystal of Ni3Al at room temperature. Composition versus depth profiles were determined by RBS, and lattice location of Ta was determined by channeling angular yield scans about the [100] axis. The hardness of the surface was measured by ultra-low load indentation. Results show that implantation softens the surface and that the Ta is randomly distributed between Ni and Al sites. Annealing at 1000 °C/1 h significantly reduces the damage and causes preferential occupation of Al sites by Ta, resulting in a slight increase in surface hardness. Further annealing at 1200 °C/0.25 h increases the surface hardness substantially and increases occupation of Al lattice sites to roughly 84%. Results are consistent with a model in which the as-implanted surface is softened by disordering, and subsequent diffusion of Ta to Al sites during thermal treatment causes hardening of the surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Curwick, L. R., Ph.D. Dissertation, University of Minnesota, 1972.Google Scholar
2.Heredia, F. and Pope, D. P., in High-Temperature Ordered Intermetallic Alloys, II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 213220.Google Scholar
3.Rawlings, R. D. and Staton-Bevan, A., J. Mater. Sci. 10, 505 (1975).CrossRefGoogle Scholar
4.Aoki, K. and Izumi, O., Phys. Status Solidi (a) 38, 587 (1976).CrossRefGoogle Scholar
5.Wee, D. M. and Suzuki, T., Trans. Jpn. Inst. Met. 20, 634 (1979).CrossRefGoogle Scholar
6.Wee, D. V., Noguchi, O., Oya, Y., and Suzuki, T., Trans. Jpn. Inst. Met. 21, 237 (1980).CrossRefGoogle Scholar
7.Pope, D. S. and Ezz, S. S., Int. Metals Rev. 29, 136 (1984).Google Scholar
8.Miller, M. K. and Horton, J. A., Scripta Metall. 20, 1125 (1986).CrossRefGoogle Scholar
9.Miller, M. K. and Horton, J. A., in High-Temperature Ordered Intermetallic Alloys, II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 117122.Google Scholar
10.Bentley, J., Proc. 44th Meeting of Electron Microscopy Society of America, Albuquerque, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1986), p. 704.Google Scholar
11.Miller, M. K. and Bentley, J., J. Phys. C7, 463 (1986).Google Scholar
12.Bohn, H. G., Schumacher, R., and Vianden, R. J., in High- Temperature Ordered Intermetallic Alloys, II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 123126.Google Scholar
13.Bohn, H. G., Williams, J. M., Barrett, J. H., and Liu, C. T., in High- Temperature Ordered Intermetallic Alloys, II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 127133.Google Scholar
14.Lin, H., Seiberling, L. E., Lyman, P. F., and Pope, D. P., in High- Temperature Ordered Intermetallic Alloys, II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 165170.Google Scholar
15.Barrett, J. H., Nucl. Instrum. Methods B30, 546 (1988).CrossRefGoogle Scholar
16.Lin, H. and Pope, D. P., J. Mater. Res. 5, 763768 (1990).CrossRefGoogle Scholar
17.Morrison, D. J., Jones, J. W., Was, G. S., Mashayekhi, A., and Hoffman, J. W., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), pp. 5358.Google Scholar
18.Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1984), p. 1.Google Scholar
19.Mayer, J. W. and Lau, S. S., Electronic Materials Science: For Integrated Circuits in Si and GaAs (Macmillan Publishing Co., New York, 1990), pp. 231232.Google Scholar
20.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
21.Was, G. S., J. Mater. Res. 5, 1668 (1990).CrossRefGoogle Scholar
22.Doolittle, L. R., Nucl. Instrum. Methods B9, 344 (1985).CrossRefGoogle Scholar
23.Ahmed, M. and Potter, D. I., Acta Metall. 35, 2341 (1987).CrossRefGoogle Scholar
24.Eridon, J., Was, G. S., and Rehn, L., J. Mater. Res. 3, 626 (1988).CrossRefGoogle Scholar
25.Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
26.Feldman, L. C., Mayer, J. W., and Picraux, S. T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982)Google Scholar