Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T14:38:19.801Z Has data issue: false hasContentIssue false

Laser-induced nanoparticle ordering

Published online by Cambridge University Press:  31 January 2011

A. J. Pedraza
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996–2200
J. D. Fowlkes
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996–2200
D. A. Blom
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6064
H. M. Meyer III
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6064
Get access

Abstract

Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kelly, R. and Miotello, A., in Pulsed-Laser Deposition of Thin Films, edited by Chrisey, D.B. and Hubler, G.K. (Wiley, New York, 1994), pp. 5587.Google Scholar
2.Geohegan, D.B., in Pulsed-Laser Deposition of Thin Films, edited by Chrisey, D.B. and Hubler, G.K. (Wiley, New York, 1994), p. 115; D.B. Geohegan and A.A. Puretzky, Appl. Surf. Sci. 96–98, 131 (1996).Google Scholar
3.Yamada, Y., Orii, T., Umezu, I., and Yoshida, T., Jpn. J. Appl. Phys. 35, 1361 (1996).CrossRefGoogle Scholar
4.Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).CrossRefGoogle Scholar
5.Makimura, T., Kunii, Y., and Murakami, K., Jpn. J. Appl. Phys. 35, 4780 (1996).CrossRefGoogle Scholar
6.Makimura, T., Sakuramoto, T., and Murakami, K., Jpn. J. Appl. Phys. 35, L735 (1996).CrossRefGoogle Scholar
7.Makimura, T., Kunii, Y., Ono, N., and Murakami, K., Jpn. J. Appl. Phys. 35, L1703 (1996).CrossRefGoogle Scholar
8.Lowndes, D.H., Rouleau, C.M., Thundat, T., Duscher, G., Kenik, E.A., and Pennycook, S.J., J. Mater. Res. 14, 359 (1999).CrossRefGoogle Scholar
9.Patrone, L., Nelson, D., Safarov, V.I., Giorgio, S., Sentis, M., and Marine, W., Appl. Phys. A. 69(Suppl.), S217 (1999).Google Scholar
10.Fowlkes, J.D., Pedraza, A.J., Jesse, S., Rouleau, C.M., and Blom, D.A., in Microcrystalline and Nanocrystalline Semiconductor Materials and Structures, edited by Fauchet, P.M., Buriak, J.M., Canham, L.T., Koshida, N., and White, B.E. Jr. (Mater. Res. Soc. Symp. Proc. 638, Warrendale, PA, 2001), p. F13.1.Google Scholar
11.Fowlkes, J.D.. Pedraza, A.J., Blom, D.A., and Meyer, H.M. III, Appl. Phys. Lett. 80, 3799 (2002); Virtual J. Nanoscale Sci. Technol. 80, 3799 (2002).CrossRefGoogle Scholar
12.Pedraza, A.J., Fowlkes, J.D., and Lowndes, D.H., Appl. Phys. A 69(Suppl.), S731 (1999).CrossRefGoogle Scholar
13.Lowndes, D.H., Merkulov, V.I., Pedraza, A.J., Fowlkes, J.D., Puretzky, A.A., Geohegan, D.B., and Jellison, G.E. Jr., in Surface Engineering: Science and Technology I, edited by Kumar, A., Chung, Y-W., Moore, J.J., and Smugeresky, J.E. (TMS, Warrendale, PA, 1999), p. 113.Google Scholar
14.Pedraza, A.J., Fowlkes, J.D., Jesse, S., Mao, C., and Lowndes, D.H., Appl. Surf. Sci. 168, 251 (2000).CrossRefGoogle Scholar
15.Pedraza, A.J., Fowlkes, J.D., and Lowndes, D.H., Appl. Phys. Lett. 77, 3018 (2000).CrossRefGoogle Scholar
16.Fowlkes, J.D., Pedraza, A.J., and Lowndes, D.H., Appl. Phys. Lett. 77, 1629 (2000).CrossRefGoogle Scholar
17.Brueck, S.R.J. and Ehrlich, D.J., Phys. Rev. Lett. 48, 1678 (1982).CrossRefGoogle Scholar
18., Fritz Kellmann, Phys. Rev. Lett. 51, 2097 (1983).CrossRefGoogle Scholar
19.Young, J.F., Preston, J.S., Driel, H.M. van, and Sipe, J.E., Phys. Rev. B27, 1155 (1982).Google Scholar
20.Figueira, J.F. and Thomas, S.J., Appl. Phys. B28, 267 (1982).Google Scholar
21.Zhou, G., Fauchet, P.M., and Siegman, E., Phys. Rev. B26, 5366 (1982).Google Scholar
22.Fauchet, P.M. and Siegman, E., Appl. Phys. Lett. 40, 824 (1982).CrossRefGoogle Scholar
23.Ehrlich, D.J., Brueck, S.R.J., and Tsao, J.Y., Appl. Phys. Lett. 41, 630 (1982).CrossRefGoogle Scholar
24.Young, J.F., Sipe, J.E., and Driel, H.M. van, Phys. Rev. B30, 2001 (1984).CrossRefGoogle Scholar
25.Temple, P.A. and Soileau, M.J., IEEE J. Quantum Electron. QE17, 2067 (1981).CrossRefGoogle Scholar
26.Keilmann, F. and Bai, Y.H., Appl. Phys. A29, 9 (1982).CrossRefGoogle Scholar
27.Bolle, M. and Lazare, S., J. Appl. Phys. 73, 3516 (1993).CrossRefGoogle Scholar
28.Dyer, P.E., Farley, R.J., Giedl, R., and Karnakis, D.M., Appl. Surf. Sci. 96–98, 537 (1996).CrossRefGoogle Scholar
29.Dyer, P.E. and Farley, R.J., J. Appl. Phys. 74, 1442 (1993).CrossRefGoogle Scholar
30.Csete, M. and Zs. Bor, Appl. Surf. Sci. 133, 5 (1998).CrossRefGoogle Scholar
31.Born, M. and Wolf, E., Principles of Optics, 5th ed. (Cambridge University Press, Cambridge, U.K., 1999).CrossRefGoogle Scholar
32.Sipe, J.E., Young, J.F., Preston, J.S., and Driel, H.M. van, Phys. Rev. B27, 1141 (1982).Google Scholar
33.Wu, C., Crouch, C.H., Zhao, L., Carey, J.E., Younkin, R., , Levinson, Mazur, E., Farrell, R.M., Gothoskar, P., and , Karger, Appl. Phys. Lett. 78, 1850 (2001).CrossRefGoogle Scholar