Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T09:12:47.476Z Has data issue: false hasContentIssue false

Laser deposition of a Cu-based metallic glass powder on a Zr-based glass substrate

Published online by Cambridge University Press:  31 January 2011

H. Sun
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
K.M. Flores*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Laser Engineered Net Shaping (LENS™) is a laser-assisted manufacturing process that offers the possibility of producing metallic coatings and components with highly nonequilibrium microstructures. In this work, the microstructure developed by LENS deposition of Cu47Ti33Zr11Ni8Si1 powder on a bulk metallic glass substrate, with nominal composition Zr58.5Nb2.8Cu15.6Ni12.8Al10.3, is investigated. Single-layer deposition results in the formation of an inhomogeneous but partially amorphous layer above a crystalline heat-affected zone. Elemental analysis of the deposited layer indicates incomplete mixing of the powder with the melt pool. The as-deposited alloy exhibits a single glass transition event and its primary crystallization event is consistent with the first crystallization temperature of the Cu-based powder. Subsequent remelting of this layer results in a still partially amorphous deposit with a uniform composition of (Zr + Nb)51.8Cu24.7Ti3.4Ni16.4Al3.7. The remelted layer exhibits a structural rearrangement immediately prior to the primary crystallization event, possibly associated with the formation of a quasicrystalline phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Loffler, J.F.: Bulk metallic glasses. Intermetallics 11, 529 2003Google Scholar
2Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 2004Google Scholar
3Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999Google Scholar
4Johnson, W.L.: Bulk amorphous metal—An emerging engineering material. JOM 54(3), 40 2002Google Scholar
5Ashby, M.F., Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 2006CrossRefGoogle Scholar
6Asami, K., Qin, C-L., Zhang, T., Inoue, A.: Effect of additional elements on the corrosion behavior of a Cu–Zr–Ti bulk metallic glass. Mater. Sci. Eng., A 375–377, 235 2004CrossRefGoogle Scholar
7Peter, W.H., Buchanan, R.A., Liu, C.T., Liaw, P.K., Morrison, M.L., Horton, J.A., Carmichael, C.A. Jr., Wright, J.L.: Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 10, 1157 2002CrossRefGoogle Scholar
8Flores, K.M., Dauskardt, R.H.: Crack-tip plasticity in bulk metallic glasses. Mater. Sci. Eng., A 319–321, 511 2001Google Scholar
9Choi-Yim, H., Conner, R.D., Szuecs, F., Johnson, W.L.: Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 50, 2737 2002Google Scholar
10Flores, K.M., Dauskardt, R.H.: Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater. 49, 2527 2001Google Scholar
11Flores, K.M., Dauskardt, R.H.: Mode II fracture behavior of a Zr-based bulk metallic glass. J. Mech. Phys. Solids 54, 2418 2006Google Scholar
12Hufnagel, T.C., Fan, C., Ott, R.T., Li, J., Brennan, S.: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 2002Google Scholar
13Hays, C.C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000Google Scholar
14Schwendner, K.I., Banerjee, R., Collins, P.C., Brice, C.A., Fraser, H.L.: Direct laser deposition of alloys from elemental powder blends. Scr. Mater. 45, 1123 2001CrossRefGoogle Scholar
15Santos, E.C., Shiomi, M., Osakada, K., Laoui, T.: Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 46, 1459 2006Google Scholar
16Gaumann, M., Henry, S., Cleton, F., Wagniere, J.D., Kurz, W.: Epitaxial laser metal forming: Analysis of microstructure formation. Mater. Sci. Eng., A 271, 232 1999CrossRefGoogle Scholar
17Kim, J., Lee, D., Shin, S., Lee, C.: Phase evolution in Cu54Ni6Zr22Ti18 bulk metallic glass Nd: YAG laser weld. Mater. Sci. Eng., A 434, 194 2006CrossRefGoogle Scholar
18Li, B., Li, Z.Y., Xiong, J.G., Xing, L., Wang, D., Li, Y.: Laser welding of Zr45Cu48Al7 bulk glassy alloy. J. Alloys Compd. 413, 118 2006Google Scholar
19Morris, D.G.: Glass-forming conditions during laser surface melting. Mater. Sci. Eng. 97, 177 1988Google Scholar
20Carvalho, D., Cardoso, S., Vilar, R.: Amorphisation of Zr60Al15Ni25 surface layers by laser processing for corrosion resistance. Scr. Mater. 37, 523 1997Google Scholar
21Audebert, F., Colaco, R., Vilar, R., Sirkin, H.: Production of glassy metallic layers by laser surface treatment. Scr. Mater. 48, 281 2003Google Scholar
22Wu, X., Hong, Y.: Fe-based thick amorphous-alloy coating by laser cladding. Surf. Coat. Technol. 141, 141 2001CrossRefGoogle Scholar
23Wu, X., Xu, B., Hong, Y.: Synthesis of thick Ni66Cr5Mo4Zr6P15B4 amorphous alloy coating and large glass-forming ability by laser cladding. Mater. Lett. 56, 838 2002CrossRefGoogle Scholar
24Yue, T.M., Su, Y.P., Yang, H.O.: Laser cladding of Zr65Al7.5Ni10Cu17.5 amorphous alloy on magnesium. Mater. Lett. 61, 209 2007CrossRefGoogle Scholar
25Wang, Y., Li, G., Wang, C., Xia, Y., Sandip, B., Dong, C.: Microstructure and properties of laser clad Zr-based alloy coatings on Ti substrates. Surf. Coat. Technol. 176, 284 2004CrossRefGoogle Scholar
26Hofmeister, W., Wert, M., Smugeresky, J., Pilliber, J.A., Griffith, M., Ensz, M.: Investigation of solidification in the laser engineered net shaping (LENSTM) process. JOM 51(7), 1999 http:\\www.tms.org/pubs/journals/JOM/9907/Hofmeister/Hofmeister-9907.htmlGoogle Scholar
27Bontha, S., Klingbeil, N.W., Kobryn, P.A., Fraser, H.L.: Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J. Mater. Process. Technol. 178, 135 2006CrossRefGoogle Scholar
28Hays, C.C., Schroers, J., Johnson, W.L.: Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3. Appl. Phys. Lett. 79, 1605 2001CrossRefGoogle Scholar
29Gallino, I., Shah, M.B., Busch, R.: Enthalpy relaxation and its relation to the thermodynamics and crystallization of the Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass-forming alloy. Acta Mater. 55, 1367 2007Google Scholar
30Choi-Yim, H., Busch, R., Johnson, W.L.: The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites. J. Appl. Phys. 83, 7993 1998Google Scholar
31Mazumder, J., Schifferer, A., Choi, J.: Direct materials deposition: Designed macro and microstructure. Mater. Res. Innovations 3, 118 1999Google Scholar
32Kurz, W., Bezencon, C., Gaumann, M.: Columnar to equiaxed transition in solidification processing. Sci. Technol. Adv. Mater. 2, 185 2001Google Scholar
33Venkataraman, S., Scudino, S., Eckert, J., Gemming, T., Mickel, C., Schultz, L., Sordelet, D.J.: Nanocrystallization of gas atomized Cu47Ti33Zr11Ni8Si1 metallic glass. J. Mater. Res. 21, 597 2006CrossRefGoogle Scholar
34Schroers, J., Masuhr, A., Johnson, W.L.: Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid. Phys. Rev. B 60, 11855 1999CrossRefGoogle Scholar
35Yamasaki, M., Kagao, S., Kawamura, Y.: Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass. Scr. Mater. 53, 63 2005Google Scholar
36Saotome, Y., Roppongi, K., Zhang, T., Inoue, A.: Characteristic behavior of La55Al25Ni20 amorphous alloy under rapid heating. Mater. Sci. Eng., A 304–306, 743 2001Google Scholar
37Sun, H., Flores, K.M.: (unpublished results, 2008)Google Scholar
38Schroers, J., Johnson, W.L.: History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts. J. Appl. Phys. 88, 44 2000Google Scholar
39Toyserkani, E., Khajepour, A., Corbin, S.: Laser Cladding 1st ed.CRC Boca Raton, FL 2005Google Scholar
40Sun, H., Flores, K.M.: (unpublished results, 2008)Google Scholar
41Hays, C.C., Schroers, J., Geyer, U., Bossuyt, S., Johnson, W.L.: Glass forming ability in the Zr–Nb–Ni–Cu–Al bulk metallic glasses. Mater. Sci. Forum 343–346, 103 2000CrossRefGoogle Scholar
42Kuhn, U., Eckert, J., Mattern, N., Schultz, L.: Formation of micrometer sized quasicrystals in slowly cooled Zr–Ti–Nb–Cu– Ni–Al alloys. Phys. Status Solidi 202, 2436 2005Google Scholar
43Kuhn, U., Eckert, J., Mattern, N., Schultz, L.: As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy. Appl. Phys. Lett. 77, 3176 2000CrossRefGoogle Scholar
44Kuhn, U., Eckert, J., Mattern, N., Schultz, L.: ZrNbCuNiAl bulk metallic glass matrix composites containing denditic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 2002Google Scholar
45Glade, S.C., Loffler, J.F., Bossuyt, S., Johnson, W.L.: Crystallization of amorphous Cu47Ti34Zr11Ni8. J. Appl. Phys. 89, 1573 2001CrossRefGoogle Scholar
46Li, Y., Ng, S.C., Ong, C.K., Hng, H.H., Goh, T.T.: Glass forming ability of bulk glass forming alloys. Scr. Mater. 36, 783 1997Google Scholar
47Lu, Z.P., Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 2002Google Scholar
48Lu, Z.P., Liu, C.T.: Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505-1-4 2003Google Scholar