Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T07:22:25.892Z Has data issue: false hasContentIssue false

Large-scale integration of single-walled carbon nanotubes and graphene into sensors and devices using dielectrophoresis: A review

Published online by Cambridge University Press:  04 July 2011

Brian R. Burg*
Affiliation:
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, 8092 Zurich, Switzerland
Dimos Poulikakos*
Affiliation:
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, 8092 Zurich, Switzerland
*
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Device and sensor miniaturization has enabled extraordinary functionality and sensitivity enhancements over the last decades while considerably reducing fabrication costs and energy consumption. The traditional materials and process technologies used today will, however, ultimately run into fundamental limitations. Combining large-scale directed assembly methods with high-symmetry low-dimensional carbon nanomaterials is expected to contribute toward overcoming shortcomings of traditional process technologies and pave the way for commercially viable device nanofabrication. The purpose of this article is to review the guided dielectrophoretic integration of individual single-walled carbon nanotube (SWNT)- and graphene-based devices and sensors targeting continuous miniaturization. The review begins by introducing the electrokinetic framework of the dielectrophoretic deposition process, then discusses the importance of high-quality solutions, followed by the site- and type-selective integration of SWNTs and graphene with emphasis on experimental methods, and concludes with an overview of dielectrophoretically assembled devices and sensors to date. The field of dielectrophoretic device integration is filled with opportunities to research emerging materials, bottom–up integration processes, and promising applications. The ultimate goal is to fabricate ultra-small functional devices at high throughput and low costs, which require only minute operation power.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Craighead, H.G.: Nanoelectromechanical systems. Science 290, 1532 (2000).Google Scholar
2.Roukes, M.L.: Nanoelectromechanical systems for the future. Phys. World 14, 25 (2001).CrossRefGoogle Scholar
3.Pohl, H.A.: The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 869 (1951).CrossRefGoogle Scholar
4.Pohl, H.A.: Dielectrophoresis (Cambridge Univ. Press, Cambridge, England, 1978).Google Scholar
5.Jones, T.B.: Electromechanics of Particles (Cambridge Univ. Press, Cambridge, England, 1995).Google Scholar
6.Morgan, H. and Green, N.G.: AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press Ltd., Hertfordshire, England, 2003).Google Scholar
7.Iijima, S. and Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).CrossRefGoogle Scholar
8.Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605 (1993).CrossRefGoogle Scholar
9.Saito, R., Dresselhaus, G., and Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes (Imperial College Press, London, England, 1998).CrossRefGoogle Scholar
10.Jorio, A., Dresselhaus, G., and Dresselhaus, M.S.: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, Germany, 2008).CrossRefGoogle Scholar
11.Reich, S., Thomsen, C., and Maultzsch, J.: Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, Germany, 2004).Google Scholar
12.O’Connell, M.J., Ed.: Carbon Nanotubes: Properties and Applications (Taylor & Francis, Boca Raton, FL, 2006).CrossRefGoogle Scholar
13.Dekker, C.: Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22 (1999).Google Scholar
14.McEuen, P.L.: Single-wall carbon nanotubes. Phys. World 13, 31 (2000).CrossRefGoogle Scholar
15.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
16.Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).CrossRefGoogle ScholarPubMed
17.Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., and Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
18.Geim, A.K.: Graphene: Status and prospects. Science 324, 1530 (2009).Google Scholar
19.Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282 (2006).CrossRefGoogle ScholarPubMed
20.Park, S. and Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217 (2009).CrossRefGoogle ScholarPubMed
21.Burg, B.R., Bianco, V., Schneider, J., and Poulikakos, D.: Electrokinetic framework of dielectrophoretic deposition devices. J. Appl. Phys. 107, 124308 (2010).CrossRefGoogle Scholar
22.Pohl, H.A. and Hawk, I.: Separation of living and dead cells by dielectrophoresis. Science 152, 647 (1966).CrossRefGoogle ScholarPubMed
23.Washizu, M. and Kurosawa, O.: Electrostatic manipulation of DNA in microfabricated structures. IEEE Trans. Ind. Appl. 26, 1165 (1990).Google Scholar
24.Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., and Mallouk, T.E.: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399 (2000).Google Scholar
25.Yamamoto, K., Akita, S., and Nakayama, Y.: Orientation of carbon nanotubes using electrophoresis. Jpn. J. Appl. Phys. 35, 917 (1996).CrossRefGoogle Scholar
26.Chen, X.Q., Saito, T., Yamada, H., and Matsushige, K.: Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl. Phys. Lett. 78, 3714 (2001).Google Scholar
27.Ramos, A., Morgan, H., Green, N.G., and Castellanos, A.: AC electrokinetics: A review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31, 2338 (1998).Google Scholar
28.Dimaki, M. and Bøggild, P.: Dielectrophoresis of carbon nanotubes using microelectrodes: A numerical study. Nanotechnology 15, 1095 (2004).CrossRefGoogle Scholar
29.Lin, Y., Shiomi, J., Maruyama, S., and Amberg, G.: Electrothermal flow in dielectrophoresis of single-walled carbon nanotubes. Phys. Rev. B 76, 045419 (2007).Google Scholar
30.Lin, Y., Shiomi, J., and Amberg, G.: Numerical calculation of the dielectrophoretic force on a slender body. Electrophoresis 30, 831 (2009).CrossRefGoogle ScholarPubMed
31.O’Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J.P., Hauge, R.H., Weisman, R.B., and Smalley, R.E.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593 (2002).CrossRefGoogle ScholarPubMed
32.Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., and Weisman, R.B.: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361 (2002).Google Scholar
33.Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., and Yodh, A.G.: High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269 (2003).CrossRefGoogle Scholar
34.Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., and Smalley, R.E.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379 (2003).CrossRefGoogle Scholar
35.Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., and Hersam, M.C.: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60 (2006).Google Scholar
36.Coleman, J.N.: Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19, 3680 (2009).CrossRefGoogle Scholar
37.Hersam, M.C.: Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3, 387 (2008).Google Scholar
38.Zhou, C.W., Kong, J., and Dai, H.: Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters. Appl. Phys. Lett. 76, 1597 (2000).CrossRefGoogle Scholar
39.Kim, W., Javey, A., Tu, R., Cao, J., Wang, Q., and Dai, H.: Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87, 173101 (2005).Google Scholar
40.Chen, Z.H., Appenzeller, J., Knoch, J., Lin, Y.M., and Avouris, P.: The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497 (2005).Google Scholar
41.Kong, J., Soh, H.T., Cassell, A.M., Quate, C.F., and Dai, H.: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998).Google Scholar
42.Kobayashi, Y., Nakashima, H., Takagi, D., and Homma, Y.: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst. Thin Films 464465, 286 (2004).Google Scholar
43.Nasibulin, A.G., Pikhitsa, P.V., Jiang, H., and Kauppinen, E.I.: Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 43, 2251 (2005).CrossRefGoogle Scholar
44.Durrer, L., Greenwald, J., Helbling, T., Muoth, M., Riek, R., and Hierold, C.: Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts. Nanotechnology 20, 355601 (2009).CrossRefGoogle ScholarPubMed
45.Hennrich, F., Krupke, R., Arnold, K., Rojas Stütz, J.A., Lebedkin, S., Koch, T., Schimmel, T., and Kappes, M.M.: The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J. Phys. Chem. B 111, 1932 (2007).Google Scholar
46.Burg, B.R., Schneider, J., Muoth, M., Durrer, L., Helbling, T., Schirmer, N.C., Schwamb, T., Hierold, C., and Poulikakos, D.: Aqueous dispersion and dielectrophoretic assembly of individual surface-synthesized single-walled carbon nanotubes. Langmuir 25, 7778 (2009).CrossRefGoogle ScholarPubMed
47.Hummers, W.S. Jr. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).Google Scholar
48.Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).CrossRefGoogle Scholar
49.Li, D., Müller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008).CrossRefGoogle ScholarPubMed
50.Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., and Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).CrossRefGoogle ScholarPubMed
51.Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., McGovern, I.T., Duesberg, G.S., and Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611 (2009).Google Scholar
52.Green, A.A. and Hersam, M.C.: Emerging methods for producing monodisperse graphene dispersions. J. Phys. Chem. Lett. 1, 544 (2010).Google Scholar
53.Krupke, R., Hennrich, F., Weber, H.B., Kappes, M.M., and Loehneysen, H.v.: Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis. Nano Lett. 3, 1019 (2003).Google Scholar
54.Helbling, T., Hierold, C., Roman, C., Durrer, L., Mattmann, M., and Bright, V.M.: Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al2O3 for sensor applications. Nanotechnology 20, 434010 (2009).CrossRefGoogle ScholarPubMed
55.Schwamb, T., Choi, T.-Y., Schirmer, N., Bieri, N.R., Burg, B., Tharian, J., Sennhauser, U., and Poulikakos, D.: A dielectrophoretic method for high yield deposition of suspended, individual carbon nanotubes with four-point electrode contact. Nano Lett. 7, 3633 (2007).Google Scholar
56.Schwamb, T., Burg, B.R., Schirmer, N.C., and Poulikakos, D.: An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology 20, 405704 (2009).Google Scholar
57.Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., and Krupke, R.: Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 7, 1556 (2007).CrossRefGoogle ScholarPubMed
58.Burg, B.R., Lütolf, F., Schneider, J., Schirmer, N.C., Schwamb, T., and Poulikakos, D.: High-yield dielectrophoretic assembly of two-dimensional graphene nanostructures. Appl. Phys. Lett. 94, 053110 (2009).Google Scholar
59.Stokes, P. and Khondaker, S.I.: High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Appl. Phys. Lett. 96, 083110 (2010).Google Scholar
60.Stokes, P. and Khondaker, S.I.: Evaluating defects in solution-processed carbon nanotube devices via low-temperature transport spectroscopy. ACS Nano 4, 2659 (2010).Google Scholar
61.Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S.: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204 (1992).Google Scholar
62.Krupke, R., Hennrich, F., Loehneysen, H.v., and Kappes, M.M.: Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344 (2003).Google Scholar
63.Krupke, R., Hennrich, F., Kappes, M.M., and Löhneysen, H.v.: Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 4, 1395 (2004).CrossRefGoogle Scholar
64.Krupke, R., Linden, S., Rapp, M., and Hennrich, F.: Thin films of metallic carbon nanotubes prepared by dielectrophoresis. Adv. Mater. 18, 1468 (2006).CrossRefGoogle Scholar
65.Kim, Y., Hong, S., Jung, S., Strano, M.S., Choi, J., and Baik, S.: Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants. J. Phys. Chem. B 110, 1541 (2006).CrossRefGoogle ScholarPubMed
66.Hong, S., Jung, S., Choi, J., Kim, Y., and Baik, S.: Electrical transport characteristics of surface-conductance-controlled, dielectrophoretically separated single-walled carbon nanotubes. Langmuir 23, 4749 (2007).Google Scholar
67.Kang, J., Hong, S., Kim, Y., and Baik, S.: Controlling the carbon nanotube-to-medium conductivity ratio for dielectrophoretic separation. Langmuir 25, 12471 (2009).Google Scholar
68.Burg, B.R., Schneider, J., Bianco, V., Schirmer, N.C., and Poulikakos, D.: Selective parallel integration of individual metallic single-walled carbon nanotubes from heterogeneous solutions. Langmuir 26, 10419 (2010).CrossRefGoogle ScholarPubMed
69.Vijayaraghavan, A., Hennrich, F., Stuerzl, N., Engel, M., Ganzhorn, M., Oron-Carl, M., Marquardt, C.W., Dehm, S., Lebedkin, S., Kappes, M.M., and Krupke, R.: Toward single-chirality carbon nanotube device arrays. ACS Nano 4, 2748 (2010).CrossRefGoogle ScholarPubMed
70.Hong, S., Jung, S., Kang, S., Kim, Y., Chen, X., Stankovich, S., Ruoff, R.S., and Baik, S.: Dielectrophoretic deposition of graphite oxide soot particles. J. Nanosci. Nanotechnol. 8, 424 (2008).Google Scholar
71.Wu, X., Sprinkle, M., Xuebin, L., Ming, F., Berger, C., and de Heer, W.A.: Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 101, 026801 (2008).CrossRefGoogle ScholarPubMed
72.Kang, H., Kulkarni, A., Stankovich, S., Ruoff, R.S., and Baik, S.: Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques. Carbon 47, 1520 (2009).CrossRefGoogle Scholar
73.Burg, B.R., Schneider, J., Maurer, S., Schirmer, N.C., and Poulikakos, D.: Dielectrophoretic integration of single- and few-layer graphenes. J. Appl. Phys. 107, 034302 (2010).CrossRefGoogle Scholar
74.Vijayaraghavan, A., Sciascia, C., Dehm, S., Lombardo, A., Bonetti, A., Ferrari, A.C., and Krupke, R.: Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening. ACS Nano 3, 1729 (2009).Google Scholar
75.Chen, C.-L., Agarwal, V., Sonkusale, S., and Dokmeci, M.R.: The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications. Nanotechnology 20, 225302 (2009).CrossRefGoogle ScholarPubMed
76.Joung, D., Chunder, A., Zhai, L., and Khondaker, S.I.: High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis. Nanotechnology 21, 165202 (2010).Google Scholar
77.Ganzhorn, M., Vijayaraghavan, A., Dehm, S., Hennrich, F., Green, A.A., Fichtner, M., Voigt, A., Rapp, M., Loehneysen, H.v., Hersam, M.C., Kappes, M.M., and Krupke, R.: Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano 5, 1670 (2011).Google Scholar
78.Chen, C.-L., Yang, C.-F., Agarwal, V., Kim, T., Sonkusale, S., Busnaina, A., Chen, M., and Dokmeci, M.R.: DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry. Nanotechnology 21, 095504 (2010).Google Scholar
79.Tombler, T.W., Zhou, C.W., Alexseyev, L., Kong, J., Dai, H.J., Lei, L., Jayanthi, C.S., Tang, M.J., and Wu, S.Y.: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769 (2000).CrossRefGoogle ScholarPubMed
80.Minot, E.D., Yaish, Y., Sazonova, V., Park, J.-Y., Brink, M., and McEuen, P.L.: Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003).Google Scholar
81.Grow, R.J., Wang, Q., Cao, J., Wang, D.W., and Dai, H.J.: Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 86, 093104 (2005).Google Scholar
82.Stampfer, C., Helbling, T., Obergfell, D., Schoberle, B., Tripp, M.K., Jungen, A., Roth, S., Bright, V.M., and Hierold, C.: Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett. 6, 233 (2006).Google Scholar
83.Helbling, T., Roman, C., and Hierold, C.: Signal-to-noise ratio in carbon nanotube electromechanical piezoresistive sensors. Nano Lett. 10, 3350 (2010).Google Scholar
84.Burg, B.R., Helbling, T., Hierold, C., and Poulikakos, D.: Piezoresistive pressure sensors with parallel integration of individual single-walled carbon nanotubes. J. Appl. Phys. 109, 064310 (2011).CrossRefGoogle Scholar
85.Marquardt, C.W., Grunder, S., Błaszczyk, A., Dehm, S., Hennrich, F., Löhneysen, H.v., Mayor, M., and Krupke, R.: Electroluminescence from a single nanotube-molecule-nanotube junction. Nat. Nanotechnol. 5, 863 (2010).Google Scholar
86.Baughman, R.H., Zakhidov, A.A., and de Heer, W.A.: Carbon nanotubes: The route toward applications. Science 297, 787 (2002).CrossRefGoogle ScholarPubMed
87.Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., and Braet, F.: Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114 (2010).CrossRefGoogle ScholarPubMed
88.Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.-Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., and Nicolosi, V.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568 (2011).Google Scholar